
Speed-ANN: Low-Latency and High-Accuracy Nearest Neighbor
Search via Intra-Query Parallelism

Zhen Peng
College of William & Mary
Williamsburg, VA USA
zpeng01@wm.edu

Minjia Zhang
Microsoft AI and Research

Bellevue, WA USA
minjiaz@microsoft.com

Kai Li
Kent State University

Kent, OH USA
kli17@kent.edu

Ruoming Jin
Kent State University

Kent, OH USA
rjin1@kent.edu

Bin Ren
College of William & Mary
Williamsburg, VA USA

bren@cs.wm.edu

ABSTRACT

Nearest Neighbor Search (NNS) has recently drawn a rapid increase
of interest due to its core role in managing high-dimensional vector
data in data science and AI applications. The interest is fueled by
the success of neural embedding, where deep learning models trans-
form unstructured data into semantically correlated feature vectors
for data analysis, e.g., recommend popular items. Among several
categories of methods for fast NNS, similarity graph is one of the
most successful algorithmic trends. Several of the most popular and
top-performing similarity graphs, such as NSG and HNSW, at their
core employ best-first traversal along the underlying graph indices
to search near neighbors. Maximizing the performance of the search
is essential for many tasks, especially at the large-scale and high-
recall regime. In this work, we provide an in-depth examination of
the challenges of the state-of-the-art similarity search algorithms,
revealing its challenges in leveragingmulti-core processors to speed
up the search efficiency. We also exploit whether similarity graph
search is robust to deviation from maintaining strict order by allow-
ing multiple walkers to simultaneously advance the search frontier.
Based on our insights, we propose Speed-ANN , a parallel similarity
search algorithm that exploits hidden intra-query parallelism and
memory hierarchy that allows similarity search to take advantage
of multiple CPU cores to significantly accelerate search speed while
achieving high accuracy.

We evaluate Speed-ANN on a wide range of datasets, ranging
from million to billion data points, and show that it reduces query
latency by 2.1×, 5.2×, and 13× on average than NSG and 2.1×,
6.7×, and 17.8× on average than HNSW at 0.9, 0.99, and 0.999
recall target, respectively. More interesting, our approach achieves
super-linear speedups in some cases using 32 threads, achieving up
to 37.7 times and 76.6 times faster to obtain the same accuracy than
two state-of-the-art graph-based nearest neighbor search methods
NSG and HNSW, respectively. Finally, with multicore support, we
show that our approach offers faster search latency than highly-
optimized GPU implementation and provides good scalability as
the increase of the number of hardware resources (e.g., CPU cores)
and graph sizes, offering up to 16.0× speedup on two billion-scale
datasets.

1 INTRODUCTION

Nearest neighbor search (NNS) is a fundamental building block
for many applications within machine learning systems and data-
base management systems, such as recommendation systems [16],
large-scale image search and information retrieval [41, 49, 59], en-
tity resolution [31], and sequence matching [13]. NNS has recently
become the focus of intense research activity, due to its core role in
semantic-based search of unstructured data such as images, texts,
video, speech using neural embedding models. In semantic-based
search, a neural embedding model transfers objects into embeddings
inR𝑑 , where𝑑 often ranges from 100 to 1000 and N ranges frommil-
lions to billions. The task then is to find the 𝐾 nearest embeddings
for a given query. For example, major e-commerce players such as
Amazon [58] and Alibaba [79] build semantic search engines, which
embed product catalog and the search query into the same high-
dimensional space and then recommends products whose embed-
dings that are closest to the embedded search query; Youtube [15]
embeds videos to vectors for video recommendation; Web-scale
search engines embed text (e.g., word2vec [54], doc2vec [43]) and
images (e.g., VGG [65]) for text/image retrieval [14, 66]. We ex-
pect applications built on top of the embedding-based search to
continue growing in the future, due to the success and continual
advancement of neural embedding techniques that can effectively
capture the semantic relations of objects. We also expect the objects
to embed will grow rapidly, due to ubiquitous data collections, e.g.,
through phones and IoT devices.

Since the search occurs for every query, the latency and the
accuracy (recall) of the search engine critically depend on the abil-
ity to perform fast near neighbor search in the high-recall range.
Various solutions for approximate nearest neighbor search (ANNS)
have been proposed, including hashing-based methods[2, 3, 17,
33], quantization-based methods [23, 35, 72, 73], tree-based meth-
ods [12, 64, 70], and graph-based methods [22, 51, 74]. Among them,
graph-based algorithms have emerged as a remarkably effective
class of methods for high-dimensional ANNS, outperforming other
approaches for very high recalls on a wide range of datasets [7].
As a result, these graph-based algorithms have been integrated
with many large-scale production systems [22, 52], where optimiza-
tions for fast search and high recall are the focus of a highly active
research area and have a clear practical impact.

ar
X

iv
:2

20
1.

13
00

7v
1

 [
cs

.D
C

]
 3

1
Ja

n
20

22

Arxiv ’22, 2022, Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren

To provide scalability, existing ANN search libraries often re-
sort to coarse-grained inter-query parallelism, by dispatching each
query to a core or even across different machines such that mul-
tiple queries can be processed simultaneously [11, 22]. Although
inter-query parallelism obtains impressive throughput improve-
ments, it does not help reduce query latency. In particular, online
applications often process each query upon its arrival and have
stringent latency service level agreements (e.g., a few milliseconds).
As the size of datasets grows rapidly, the increased latency of cur-
rent graph-based ANN algorithms has been restraining ANN-based
search engines from growing to large-scale datasets, especially for
high-recall regimes. To provide relevant results with consistently
low latency, in this work, we investigate the possibility of intra-
query parallelism on individual nodes to meet latency goals.

Although graph-based ANN consists of primarily graph oper-
ations, simply dividing the work of graph traversal into multiple
threads is insufficient for supporting efficient ANN search, as it
cannot efficiently leverage the underline multi-core processors due
to complex interactions between graph operations and the hard-
ware threads and memory hierarchy. In our studies, the intra-query
parallelism may sometimes hurt search efficiency, because the com-
munication and synchronization overhead increases as we increase
the number of cores, making it especially harder to achieve high
efficiency.

In this work, we provide an in-depth examination of the graph-
based ANN algorithms with intra-query parallelism. Through a
series of experiments, we have identified that an intrinsic challenge
of the graph search process lies in its long convergence step —
existing best-first search leads to long convergence steps and in-
troduces heavy control dependencies that limit the upper bounds
on speedup by using more cores, as predicted by Amdahl’s Law.
In our study, we find that, by enlarging the Best-First Search to
Speed-ANN , the search process can converge in much fewer itera-
tions, suggesting that the search process can achieve better overall
performance by running individual queries with more hardware re-
sources. However, exposing the path-wise parallelism also changes
the search dynamics of queries, leading to additional challenges that
may adversely affect search efficiency, which resides in the aspects
of redundant computations, memory-bandwidth under-utilization,
high synchronization overhead, and irregular accesses caused poor
data locality.

Based on the insights from our analysis, we present Speed-ANN ,
a similarity search algorithm that combines a set of optimizations to
address these challenges. Speed-ANN introduces three tailored opti-
mizations to provide improved performance for graph-based ANN
search. First, Speed-ANN uses parallel neighbor expansion to divide
the search workload to multiple workers in coarse-grained paral-
lelism. Among it, every worker performs its private best-first search
in an asynchronous manner to avoid heavy global communication.
Second, Speed-ANN employs a staged search scheme, which reduces
redundant computations caused by over-expansion during a parallel
search. Third, Speed-ANN is characterized by redundant-expansion
aware synchronization to lazily synchronize among workers while
still providing fast search speed high recall. Finally, Speed-ANN
provides additional optimizations such as loosely synchronized
visiting maps and a cache-friendly neighbor grouping mechanism

to improve cache locality during parallel search. In summary, this
paper makes the following contributions:
(1) provides the first comprehensive experimental analysis of

intra-query parallelism for ANN search on multi-core architec-
ture and identifies several major bottlenecks to speedup graph-
based approximate nearest neighbors in high recall regime;

(2) studies how the characteristics of a query vary as the search
moves forward from multiple aspects, e.g., by increasing the
edge-wise parallelism degree and the dynamics in search queue
update positions, which reveals the opportunities and chal-
lenges it brings;

(3) introduces a search algorithm named Speed-ANN with novel
optimizations such as staged parallel neighbor expansion and
redundant-expansion aware synchronization that allow parallel
search on graph-based ANN to achieve significantly lower
latency with high recall on different multi-core hardwares.

(4) conducts thorough evaluation on a wide range of real-world
datasets ranging from million to billion data points to show
that Speed-ANN speeds up the search by 1.3×–76.6× com-
pared to highly optimized state-of-the-art CPU-based search
algorithms NSG [22] and HNSW [52]. Speed-ANN sometimes
achieves super-linear speedups in the high recall regime as the
number of threads increases, obtaining up to 37.7× speedup
over NSG and up to 76.6× speedup over HNSWwhen using 32
threads. Speed-ANN also outperforms a state-of-the-art GPU
implementation and provides good scalability.

2 PRELIMINARIES

2.1 Approximate Nearest Neighbors

The nearest neighbor search problem in high-dimensional space is
fundamental in various applications of information retrieval and
database management. In this paper, the Euclidean space under the
𝑙2 norm is denoted by 𝐸𝑑 . The closeness of any two points 𝑝1 and
𝑝2 is defined by the 𝑙2 distance 𝛿 (𝑝1, 𝑝2) between them [22]. The
Nearest Neighbor Search (NNS) can be defined as follows [24]:

Definition 1 (Nearest Neighbor Search). Given a finite
point set 𝑃 of 𝑛 points in the space 𝐸𝑑 , preprocess 𝑃 so as to answer a
given query point 𝑞 by finding the closest point 𝑝 ∈ 𝑃 .

Please note that the query point 𝑞 is not in the point set 𝑃 , i.e.
𝑞 ∉ 𝑃 . The above definition generalizes naturally to the 𝐾 Nearest
Neighbor Search (K-NNS) where we want to find𝐾 > 1 points in the
database that are closest to the query point. A naïve solution is to
linearly iterate all points in the dataset and evaluate their distance
to the query. It is computationally demanding and only suitable for
small datasets or queries without a time limit of response. Therefore,
it is practical to relax the condition of the exact search by allowing
some extent of approximation. The Approximate Nearest Neighbor
Search (ANNS) problem can be defined as follows [24]:

Definition 2 (𝜖-NearestNeighbor Search). Given a finite
point set 𝑃 of 𝑛 points in the space 𝐸𝑑 , preprocess 𝑃 so as to answer
a given query point 𝑞 by finding a point 𝑝 ∈ 𝑃 such that 𝛿 (𝑝, 𝑞) ≤
(1 + 𝜖)𝛿 (𝑟, 𝑞) where 𝑟 is the closest point to 𝑞 in 𝑃 .

Similarly, this definition can generalize to the Approximate 𝐾
Nearest Neighbor Search (AKNNS) where we wish to find 𝐾 > 1

Speed-ANN: Low-Latency and High-Accuracy Nearest Neighbor Search via Intra-Query Parallelism Arxiv ’22, 2022,

(a) Data points and a

query point.

1

(b) Nearest neighbors

of the query.

2

(c) A graph index and

search procedure.

Figure 1: An example of graph-based ANNS. Circles are data
points. The golden star is query target (not in dataset). Four red
circles are its nearest neighbors. Graph-based ANNS builds a graph
index on the dataset in 1c. The yellow circle is the starting point.
Orange circles are visited vertices during the search via Algorithm 1.

points 𝑝1, . . . , 𝑝𝐾 such that ∀𝑖 = 1, . . . , 𝐾, 𝛿 (𝑝𝑖 , 𝑞) ≤ (1 + 𝜖)𝛿 (𝑟𝑖 , 𝑞)
where 𝑟𝑖 is the 𝑖th closest point to 𝑞.

In practice, determining the exact value of 𝜖 requires some hard
efforts. Instead, we use recall as the metric to evaluate the quality
of the approximation. A high recall implies a small 𝜖 , thus a good
quality of the approximation. It is defined as the value of the recall.
Suppose the approximate points set found for a given query 𝑞 is 𝑅′,
and the true 𝐾 nearest neighbor set of 𝑞 is 𝑅, the recall is defined
as follows [21]:

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅′) = |𝑅
′ ∩ 𝑅 |
|𝑅′ | =

|𝑅′ ∩ 𝑅 |
𝐾

(1)

For a particular recall target, i.g. 0.990 or 0.995, our goal is to
make the query latency as short as possible.

2.2 Graph-based ANN Search

Various ANNS solutions have been proposed over decades, e.g.,
the ones based on trees [5], hashing [32], quantization [4], and
graphs [22, 51, 74]. Recently, many experimental results [22, 51]
show that graph-based approaches usually outperform others, re-
sulting in the best execution performance and recall. That is because
graph-based approaches can better express the neighbor relation-
ship, allowing to check much fewer points in neighbor-subspaces.

Graph-based ANNS relies on a graph structure as its index, in
which a vertex represents a data point in the data set and an edge
links two points as shown in Figure 1. A vertex 𝑝2 is called a neigh-
bor of a vertex 𝑝1 if and only if there is an edge from 𝑝1 to 𝑝2.
Many prior efforts focus on constructing optimal graphs for effi-
cient ANNS [22, 52]—which is not the focus of this work. In contrast,
this work is based on the state-of-the-art graph construction ap-
proach [22], and aims to parallelize ANNS itself with a thorough
study of its bottleneck and a set of advanced techniques addressing
these bottlenecks.

Given the graph-based index built ready, Best-First Search algo-
rithm is widely used by many graph-based methods for searching
nearest neighbors [6, 18, 26, 29, 38, 51, 52]. Given a query point
𝑄 and a starting point 𝑃 , the algorithm is to search for 𝐾 nearest
neighbors to 𝑄 . In the first search step, it visits 𝑃 ’s neighbors and
computes their distance to 𝑄 respectively to choose the closest
vertex or candidate, and the next search step starts from the chosen
candidate from the last step. All visited vertices are recorded and
kept in order according to their distance to𝑄 . The search step stops
when the first 𝐾 visited vertices do not change anymore, which are

the final 𝐾 nearest neighbors. The time spent to find the 𝐾 nearest
neighbors is the query’s latency.

3 COMPLEXITIES IN GRAPH-BASED ANN

SEARCH FOR OPTIMIZATIONS

3.1 Overview of Graph-based ANN Search

The search procedure in existing similarity graph algorithms, such
as NSG [22] and HNSW [52], is a best-first traversal that starts at a
chosen (e.g., medoid o random) point and walks along the edges of
the graph while getting closer to the nearest neighbors at each step
until it converges to a local minimum. Algorithm 1 shows its basic
idea. In a similarity graph, nodes represent entities in a problem
domain (e.g., a video or image in a recommendation system), with
each carrying a feature vector . Edges between nodes capture their
closeness relationship, which can be measured through a metric
distance (e.g., Euclidean). There are a few main differences between
the best-first traversal and classic BFS (breadth-first search) and
DFS (depth-first search) algorithms. The first is an ordering-based
expansion. During graph traversal, the algorithm selects the clos-
est unchecked node 𝑣𝑖 , called an active node, and computes the
distance of all neighbors of 𝑣𝑖 to the query with their feature vectors
(Line 8-12), and only inserts promising neighbors into a priority
queue as new unchecked candidates for future expansion. In this
way, the search can limit the number of distance computations
needed to converge to near neighbors. Second, different from the
BFS and DFS, which traverse all the connected nodes, the best-first
search converges when no new (unchecked) vertex can be found
to update the priority queue, leading to a different number of con-
vergence iterations (i.e., the number of while loop iterations in
Algorithm 1) for different datasets and queries.
Algorithm 1: Best-First Search (BFiS)
Input: graph 𝐺 , starting point 𝑃 , query 𝑄 , queue capacity 𝐿
Output: 𝐾 nearest neighbors of 𝑄

1 priority queue 𝑆 ← ∅
2 index 𝑖 ← 0

3 compute 𝑑𝑖𝑠𝑡 (𝑃,𝑄)
4 add 𝑃 into 𝑆
5 while has unchecked vertices in 𝑆 do

6 𝑖 ← the index of the 1st unchecked vertex in 𝑆
7 mark 𝑣𝑖 as checked

/* Expand 𝑣𝑖 */

8 foreach neighbor 𝑢 of 𝑣𝑖 in 𝐺 do

9 if 𝑢 is not visited then

10 mark 𝑢 as visited
11 compute 𝑑𝑖𝑠𝑡 (𝑢,𝑄)
12 add 𝑢 into 𝑆

13 if 𝑆 .size() > 𝐿, then 𝑆 .resize(𝐿)
14 return the first 𝐾 vertices in 𝑆

3.2 Complexities for Optimizations

The graph traversal process in similarity graphs shares some com-
mon complexities with traditional graph processing for perfor-
mance optimizations, but it also owns some distinctive features.

Arxiv ’22, 2022, Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren

1
3

2 5

8

7

6

4

2 3 5 5 3 5

1’s data 2’s data 3’s data … 8’s data

Graph compressed sparse row (CSR) index

vertex index

edge id
Data vectors

1 2 3 4 5vertex ids 6 7 8

0 2 3 4 6 9 11 11

6 7 8 4 8 1

Figure 2: The storage structure of the graph-based index. The
graph topology is stored in compressed sparse row (CSR) format,
and the data vectors are stored in consecutive arrays.
However, no previous work has given a systematic examination
of these complexities. Such knowledge is essential for optimizing
similarity graph search, especially at a large scale.
Challenge I: Best-First Search (BFiS) takes long iterations to

converge, resulting in a prolonged critical path with heavy

control dependency. As Algorithm 1 shows, this search consists
of a sequence of search steps (Line 5-13) in which the candidates
in the current step are determined by the last step. Consider that
ANNS usually queries for the top K nearest neighbors, requiring
the first K elements in the priority queue to become stable. This
state update usually converges slowly (e.g., > 400 search steps or
convergence steps to find the 100-nn with 0.999 recall for a million-
scale dataset SIFT1M), resulting in a long critical path of execution.
Challenge II: Limited edge-wise parallelism in traversal and

memory bandwidth under-utilization. Beyond the aforemen-
tioned long convergence steps, it is possible to parallelize the neigh-
bor expansion step (Line 8-12 in Algorithm 1) to reduce the ex-
ecution time by dividing the neighbors into disjoint subsets and
having multiple threads each compute the distance for a subset in
parallel, which is called edge-wise parallelism. However, this paral-
lelism strategy often achieves sub-optimal performance, because
many similarity graphs have a small truncated out-degree on all
nodes to avoid the out-degree explosion problem [22]. As a result,
dividing the work across more worker threads would result in each
thread processing only a very small number of vertices. Further-
more, edge-wise parallelism also adds synchronization overhead
(e.g., at Line 14) to maintain an ordered expansion. Our preliminary
experiment results in Table 1 show that the edge-wise parallelism
strategy (e.g., running with 64 threads on five datasets) leads to
less than 5% of the peak hardware memory bandwidth (∼80 GB/s),
indicating a large performance potential remains yet to tap into.
Table 1: Memory bandwidth (bdw.) measurement for edge-

wise parallelism strategy.

Datasets SIFT1M GIST1M DEEP10M SIFT100M DEEP100M
bdw. (GB/s) 1.9 3.3 1.6 1.0 1.1

Challenge III: Strict expansion order leads to high synchro-

nization cost. Existing similarity graph search algorithms use a
priority queue to maintain the strict priority order of all candidates
according to their distances to the queue point. Although it is pos-
sible in principle to use a concurrent priority queue that uses locks
or lock-free algorithms to synchronize the candidate insertions
(Line 14), we observe that the parallel scalability is severely limited
by maintaining this strict order because each worker thread only
performs distance computations for a few vertices.
Challenge IV: Poor locality brought by irregularmemory ac-

cesses. Existing similarity graphs often store the graph index (e.g.,
in the compressed sparse row (CSR) format that contains a vertex

v1 v2 v2v1 v2 v2global queue vm…
v3v2v1

v1 v2 v3 …

v1 v2 v2v1 v2 v2v1 v2 v3 … global queue

Staged
Exploration

Parallel
Neighbor

Expansion
Redundant-
Expansion

Aware Sync.

local queuesunchecked candidates

local queues

Neighbor
Grouping

Graph Index
and Data

kNNs

Q
v1
v2
v3
…

A query Q

n1

n2

nt

…

dist(n1, Q)

dist(n2, Q)

dist(nt, Q)

…

neighbors
workers

Lo
os

el
y

Sy
nc

. M
ap

local queue v1 local queue

sub-state j sub-state j+1

Select Visit Compute Insert

need sync?
T

F

Figure 3: Overview of Speed-ANN .

array and an edge array) and feature vectors (e.g., in one embed-
ding matrix) separately in memory as different objects, as shown
in Figure 2. There are two points in this design that lead to ineffi-
ciencies. First, the accessed nodes often reside discontinuously in
memory, which leads to unpredictable memory accesses. Second, it
requires one-level of indirection to access feature vectors, leading
to difficulties for memory locality optimizations.

4 DESIGN OF Speed-ANN
Based on the observations from Section 4.1, we introduce Speed-
ANN , a parallel search algorithm that exploits lightweight intra-
query parallelism (i.e., path-wise parallelism and edge-wise paral-
lelism) to accelerate the search efficiency of similarity graphs on
multi-core CPU architectures. We first provide an overview of our
architecture-aware design, and then we discuss technical details.

Figure 3 depicts Speed-ANN ’s overall design that addresses the
challenges mentioned in Section 3 to perform an efficient similarity
graph search. To reduce the long critical path dependency (Chal-
lenge I) and increase the amount of parallelism, Speed-ANN uses
parallel neighbor expansion to deliver coarse-grained parallelism.
Speed-ANN further introduces a staged search strategy to reduce
redundant computations caused by over-expansion during a par-
allel search. To limit global synchronization overhead (Challenge
III), Speed-ANN adopts redundant-expansion aware synchronization
to adaptively adjust synchronization frequency. As such, Speed-
ANN reduces the number of global synchronizations while still
achieving high search accuracy. Besides, Speed-ANN uses loosely
synchronized visit maps for lightweight communication and also
performs the neighbor grouping technique to improve memory
locality (Challenge IV).

4.1 Parallel Neighbor Expansion

Although it is challenging to parallelize the Best-First Search (BFiS)
process due to its long critical path and limited edge-wise paral-
lelism, the semantics of the algorithm does not seem to always
require a strict order as long as the goal is to minimize the total
search time of near neighbors. In this section, we exploit whether
the search is robust to deviation from a strict order by allowing
concurrent expansion of multiple active nodes. For practical sim-
ilarity search, e.g., NSG and HNSW, there is no guarantee that a
monotonic search path always exists for any given query [22]. As
a result, the search can easily get trapped into the local optimum.
To address this issue, BFiS may backtrack to visited nodes and find
another out-going edge that has not been expanded to continue the

Speed-ANN: Low-Latency and High-Accuracy Nearest Neighbor Search via Intra-Query Parallelism Arxiv ’22, 2022,

A:27

B:29

E:22

K:11

C:26

D:24

F:21

H:17

G:19

I:15

J:12

M:7

N:5

L:9

O:2

SGSP:1

A B C D
E F G H
I J K L
M N O P

1

3
4

6 7
8

11

5
9

2 10

starting point

query point
nearest neighbor

expand

backtrack
visit

(a) Best-First Search w/ back-

track.

Top-M,
M = 3

A:27

B:29

E:22

K:11

C:26

D:24

F:21

H:17

G:19

I:15

J:12

M:7

N:5

L:9

O:2

P:1
1

2
3

3 4
5

43

1
1

2

24

5

(b) Speed-ANN : expand top-3 can-

didates.

Figure 4: Comparison of BFiS and Speed-ANN . BFiS needs a
long search path with backtrack to find nearest neighbors (11 steps).
Speed-ANN reduces backtrack and completes with a shorter path
(5 steps).

0 50 1000

50

100

Found Nearest Neighbors

C
on

ve
rg

en
ce

 S
te

ps BFiS
Speed-ANN

(a) Convergence steps to find

the 𝐾-th nearest neighbor in the

queue. 𝐾 is specified by the x-

axis.Although BFiS can find the first
neighbor quickly, it still needs many
steps to find all others.

0 50 100 1500

50

100

Search Steps

N
um

. o
f U

nc
he

ck
ed

Ve

rti
ce

s

BFiS
Speed-ANN

(b) Numbers of unchecked candi-

dates (vertices) in the queue af-

ter every search step. While BFiS
needs 100+ steps to converge, Speed-
ANN only needs 10+ steps. Values
are the average of 10K queries.

Figure 5: Speed-ANN results in much less search steps than

BFiS. Dataset is SIFT1M. They have the same 𝐿 = 100. Speed-ANN
has𝑀 = 64, where𝑀 means the top𝑀 unchecked candidates.
search. Figure 4(a) illustrates a search path with backtracking. The
search starts from vertex 𝐴 and calculates the distance (indicated
by the number following the letter on each vertex) between the
three neighbors of𝐴 (𝐵, 𝐹 , and𝐻) and the query point. Because𝐻 ’s
distance is locally the smallest, BFiS would select 𝐻 as the active
node in the next step. However, given that further expanding 𝐻
no longer leads to a closer candidate, the search reaches a local
minimum and performs a backtracking to the next promising candi-
date 𝐹 . The search process then may backtrack multiple times until
it either finds the near neighbor (e.g., 𝑂) or exhausts the search
budget.

Backtracking creates additional dependencies in BFiS process
and increases the convergence steps to find near neighbors. How-
ever, many of these backtracking dependencies can be "fake" de-
pendencies if we perform a parallel neighbor expansion, e.g., by
expanding multiple active nodes concurrently, it is possible to shorten
the convergence steps by starting early at one of those backtracking
points. As an example, while it takes 11 steps to find the near neigh-
bor in Figure 4(a), it only takes 5 steps in Figure 4(b) if we expand
nodes F, G, J, M right after expanding their parent nodes.

Based on this insight, we introduce Speed-ANN . In this scheme,
the priority order is relaxed such that in each step, top𝑀 unchecked

candidates are selected as active nodes for expansion instead of
just the best candidate.
Speed-ANN exposes hidden parallelism. The relaxation of the
order enables two levels of parallelism: the path-wise parallelism

0.90 0.95 1.000.0

5.0×107

1.0×108

1.5×108

Recall@100

D
is

ta
nc

e
C

om
pt

.

BFiS
Speed-ANN

Figure 6: Distance computa-

tions of BFiS and Speed-ANN ,

where𝑀 = 64.

4 16 64 2560

1×108

2×108

0

100

200

M

D
is

ta
nc

e
C

om
pt

. C
onvg. Steps

Convergence Steps
Distance Compt.

Figure 7: Distance compu-

tations and search steps of

Speed-ANN when𝑀 changes.

where multiple threads can concurrently expand the search fron-
tier, and the edge-wise parallelism when expanding an individual
active node. Moreover, instead of having a global queue to maintain
strict expansion orders among all workers, each worker has a local
priority queue, which allows a thread to exploit a small number of
order inversions (i.e., allowing a worker thread to locally select and
expand active nodes ahead of the global order), which can dramat-
ically reduce communication, synchronization, and coordination
between threads.
Speed-ANN converges faster to near neighbors. One key ben-
efit of Speed-ANN is that it significantly shortens the convergence
steps compared to BFiS. Figure 5 shows the comparison results of
convergence steps between BFiS and Speed-ANN . The results are
measured on dataset SIFT1M using 10K queries with 0.90 recall
target, and𝑀 is set to 64. Speed-ANN takes on average 3.4, 5.0, and
5.4 steps to find the 1st, 50th, and 100th nearest neighbor, respec-
tively, whereas BFiS takes 10.1, 69.4, and 88.1 steps, respectively.
From another aspect, Speed-ANN takes much fewer steps to finish
examining all the unchecked vertices in 𝑆 than BFiS, as shown in
Figure 5b. Both results indicate that Speed-ANN has a much faster
convergence speed than BFiS.
Tree-based Expansion View. Similar to the classical DFS/BFS,
BFiS naturally introduces an expansion tree: the root node𝑇𝑟 of the
tree is the starting vertex 𝑃 in graph 𝐺 ; the children of a tree node
𝑇𝑖 (corresponding to a graph vertex 𝑣𝑖) are the unvisited neighbors
of 𝑣𝑖 . The expansion of BFiS bears many similarities to DFS, as each
time, it will expand only one leaf node. However, different from
DFS, which expands the one with the most depth, BFiS expands the
one which is closest to query 𝑄 . Thus, we have the same concepts
of backtracking and Steps in BFiS.

The power of Speed-ANN is that it expands the𝑀 leaves simul-
taneously of the tree, which are 𝑀 nearest neighbors of query 𝑄
among all the leaves of the current expansion tree. This effectively
searches/extends 𝑀 paths in parallel instead of a single path (in
BFiS). Thus, Speed-ANN can potentially reduce the total number
of steps of BFiS by a factor of 𝑀 times, as for 𝑘 Steps, Speed-ANN
can expand 𝑘𝑀 tree nodes/leaves. Further, due to the hardware
capability, at the same time, Speed-ANN can process𝑀 leaves/paths
expansion as only what is in BFiS (one single leave or path expan-
sion), leading to the low latency of query processing. We also note
that the BFiS becomes a special case of Speed-ANN where𝑀 = 1,
and both parallelization are under Bulk Synchronous Parallel (BSP)
model [68] though BFiS has rather limited parallelism to explore.

4.2 Staged Speed-ANN to Avoid Over-Expansion

Despite the faster convergence speed, intra-query parallel search
incurs additional challenges in increased distance computations.

Arxiv ’22, 2022, Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren

0.90 0.95 1.000.0

5.0×107

1.0×108

1.5×108

Recall@100

D
is

ta
nc

e
C

om
pu

ta
tio

n

BFiS

Speed-ANN w/o staged search
Speed-ANN w. staged search

(a) Distance computation ofBFiS,
Speed-ANN w/o staged search,

and Speed-ANN w. staged search.

Staged search avoids additional
distance computation from over-
expansion.

0 5 10 150

50

100

Search Steps

N
um

. o
f U

nc
he

ck
ed

Ve

rti
ce

s Speed-ANN w/o staged search
Speed-ANN w. staged search

(b) Number of unchecked can-

didates after each search step.

Speed-ANN carries fast convergence
properties.

Figure 8: Comparison between Speed-ANN without staged

search and with staged search: distance computation &

search steps.𝑀 = 64.

Figure 6 shows that to reach the same recall, Speed-ANN often leads
to more distance computations than BFiS. Speed-ANN has more
computations because parallel neighbor expansion allows a query
to take fewer steps to reach the near neighbors by avoiding fake
dependencies from backtracking but it also introduces more com-
putations to explore additional paths. Furthermore, we observe that
although the convergence steps continue to decrease with larger𝑀 ,
the number of distance computations also increases dramatically,
as shown in Figure 7.

When the number of parallel workers is large, the search speed
of Speed-ANN might be sluggish because the over-expansion of
neighbors can result in many redundant computations during the
entire search process. To avoid unnecessary distance computations
caused by over-expansion, we take a staged search process by grad-
ually increasing the expansion width (i.e., M) and the number of
worker threads every 𝑡 steps during the search procedure. The intu-
ition is that the search is less likely to get stuck at a local minimum
at the beginning of the search, so the best-first search with a single
thread can already help the query to get close to near neighbors. As
the search moves forward, it becomes more likely that a query will
get stuck at a local minimum and requires backtracking to escape
from the local minimum. Therefore, a parallel neighbor expansion
search with a larger expansion width in later phases can better
help reduce the convergence steps. We find that a simple staging
function works well in practice: when the search begins, we first set
a starting value and a maximum value for𝑀 . The starting value is
usually one, and the maximum value can be as large as the number
of available hardware threads. Subsequently, for every 𝑡 steps (e.g.,
𝑡 = 1) we double the value of 𝑀 until 𝑀 reaches its maximum.
Figure 8a shows that by taking staged search, Speed-ANN reduces
the amount of redundant significantly in comparison to Speed-ANN
without staged search and leads to distance computations close to
BFiS. On the other hand, Speed-ANN is able to converge as almost
fast as Speed-ANN without staged search, as shown in Figure 8b.
These results indicate that our staged search method still achieves
fast convergence speeds without incurring too many distance com-
putations caused by over-expansion through the parallel search on
a large number of workers.

20 40 60 80 1000
20
40
60
80

100

6.5×108

7.0×108

7.5×108

8.0×108

Synchronization FrequencySy
nc

. O
ve

rh
ea

d
(%

) D
ist. C

om
pt.

Dist. Computation
Sync. Overhead

Figure 9: Speed-ANN ’s sync.

overhead and distance com-

putation vs. sync. frequency.

0 50 100 150 200 2500

50

100

150

Search Steps

Av
g.

 U
pd

at
e

Po
si

tio
n

Local Queue Capacity

Figure 10: A query’s aver-

age update positions during

searching.

4.3 Redundant-Expansion Aware

Synchronization

As mentioned in Section 3, yet another big performance bottleneck
in intra-query parallelism resides in the synchronization overhead.
Figure 9 shows how the global synchronization frequency influ-
ences the synchronization overhead (calculated by synchronization
time divided by overall execution time) and the overall distance
computations. All results in this figure return the same recall value.
It shows that the synchronization overhead increases significantly
when the synchronization frequency grows. We also find that or-
der inversion (without enough synchronization) slows down the
search convergence and results in growing distance computations
(as shown in Figure 9). This is because, without enough synchro-
nization, worker threads keep searching their own (unpromising)
areas without benefiting from other threads’ latest search results
that may lead to faster convergence. This study demonstrates that a
proper synchronization frequency is desired to achieve high system
performance.
Measuring redundant expansion via update positions. To un-
leash the full power of multi-core systems, Speed-ANN performs
a unique form of lazy synchronization so that worker threads do
not need to synchronize at every search step in most cases. Espe-
cially, our synchronization scheme is redundant-expansion aware,
which means instead of having a strict order through the entire
convergence steps, we allow some relaxation of the order as long
as each worker thread is still performing some effective search and
the global order becomes consistent again after a large amount of
redundant expansion has been detected. In this paper, we propose
a new way to measure the effectiveness of intra-query parallel
search based on the update positions of workers. When a worker
expands an unchecked candidate, its neighbors are then inserted
into the worker’s local queue, and the update position is defined
as the lowest (best) position of all newly inserted candidates. Thus,
the average update position is the mean of all update positions of
workers. Figure 10 demonstrates how an example query’s average
update position changes during the search steps without global syn-
chronization. It shows that the average update position increases
gradually to the local queue capacity and resides there to the end.
When the average update position is close to the queue capacity,
it indicates that most workers are searching among unpromising
areas and cannot find good enough candidates to update their local
results. Therefore, the average update position can be used as a
metric to determine if all workers need to synchronize their local
results to adjust the search order. We would like to note that there
could be more than one metric to decide when to perform the lazy

Speed-ANN: Low-Latency and High-Accuracy Nearest Neighbor Search via Intra-Query Parallelism Arxiv ’22, 2022,

synchronization. We leave it as an open research question and more
advanced methods might lead to better performance improvements.

Algorithm 2 describes how to use the average update position
as the metric to decide when to perform a lazy synchronization.
Given the queue capacity 𝐿 and a position ratio 𝑅, the threshold of
the average update position to do synchronization is set as 𝐿 · 𝑅.
If the checker finds the average update position is greater than or
equal to the threshold (Line 2), it returns true indicating a global
synchronization in Algorithm 3. Empirically, the ratio 𝑅 is close
to 1.0, such as 0.9 or 0.8. The input vector of all update positions
is updated by workers regularly without locks. The return flag is
only written by the checker who is assigned among workers in a
round-robin manner.
Algorithm 2: CheckMetrics() (Update Position Version)
Input: vector of update positions𝑈 , queue capacity 𝐿,

position ratio 𝑅, number of workers 𝑇
Output: true or false

1 𝑢 ← average positions of elements in𝑈
2 if 𝑢 ≥ 𝐿 · 𝑅 then

3 return true
4 else

5 return false

Table 2 shows preliminary results about the performance com-
parison between adaptive synchronization and no-synchronization.
No-synchronization means each thread performs its local search
and only combines the results in the end. The results show that
adaptive synchronization is able to improve search efficiency with
fewer distance computations. Overall, the reduced synchronization
and distance computation from our redundant-expansion-aware
synchronization is especially helpful for parallel neighbor expan-
sion on a large number of workers, because global synchronization
across multiple threads is still expensive and not very scalable as
the number of cores increases.
Table 2: Comparison between no-sync. and adaptive sync. 8
threads on SIFT1M for Recall@100 0.9. Adaptive sync. check work-
ers’ dynamic status and merge queues adaptively. Lt. denotes la-
tency. Compt. denotes distance computation.

Dataset no-sync. adaptive sync.
Lt. (ms.) Compt. Lt. (ms.) Compt.

SIFT1M 1.16 125.3 M 0.70 33.1 M

Putting It Together. Algorithm 3 describes the overall algorithm
of Speed-ANN . At the beginning of each global step, the global queue
evenly divides its unchecked candidates among all local threads.
After that, each worker performs a local best-first search based on
its own local queue of sub-states (Line 11 to Line 22). Different from
the global state that involves updating the global queue, a worker’s
local sub-state is the state of its private queue. In a local search step,
a worker expands its own best unchecked candidate and updates
its private queue accordingly. Before the global queue’s state is
updated, a worker can have multiple sub-states of its own private
queue. A worker continues expansion until CheckMetrics() raises
a flag for merging or it has no unchecked candidates left locally. In
a round-robin way, a worker is assigned as the checker. Her duty
is to check (as what CheckMetrics() does) if all workers need to

synchronize their sub-states by merging all private queues into the
global queue. If so (Line 20), all workers will stop their local search
and merge their queues.
Algorithm3: Speed-ANN Intra-Query Parallel ANN Search
Input: graph 𝐺 , starting point 𝑃 , query 𝑄 , queue capacity 𝐿,

number of workers 𝑇
Output: 𝐾 nearest neighbors of 𝑄

1 expansion width𝑀 ← 1

2 global priority queue 𝑆 ← an empty queue
3 local priority queues 𝐿𝑆 ← 𝑇 empty queues
4 compute 𝑑𝑖𝑠𝑡 (𝑃,𝑄)
5 add 𝑃 into 𝑆
6 while true do
7 divide all unchecked vertices from 𝑆 into 𝐿𝑆
8 if all 𝐿𝑆 are empty then

9 break
10 foreach worker 𝑡 out of𝑀 in parallel do
11 while 𝐿𝑆 [𝑡] contains unchecked vertices and

𝑑𝑜𝑀𝑒𝑟𝑔𝑒 is false do
12 vertex 𝑣 ← the first unchecked vertex in 𝐿𝑆 [𝑡]
13 mark 𝑣 as checked
14 foreach neighbor 𝑢 of 𝑣 in 𝐺 do

15 if 𝑢 is not visited then

16 mark 𝑢 as visited
17 compute 𝑑𝑖𝑠𝑡 (𝑢,𝑄)
18 add 𝑢 into 𝐿𝑆 [𝑡]

19 if 𝐿𝑆 [𝑡].size() > 𝐿, then 𝐿𝑆 [𝑡].resize(𝐿)
20 if 𝑡 is the checker and CheckMetrics() returns

true then
21 𝑑𝑜𝑀𝑒𝑟𝑔𝑒 ← true
22 assign the next checker in round-robin way

23 merge 𝐿𝑆 into 𝑆
24 if 𝑆 .size() > 𝐿, then 𝑆 .resize(𝐿)
25 if 𝑀 < 𝑇 then

26 𝑀 ← 2𝑀

27 return the first 𝐾 vertices in 𝑆

4.4 Additional Optimizations

Loosely Synchronized Visiting Map. There is one potential bot-
tleneck to multi-threaded parallel scaling in Algorithm 3 on our
target architectural platforms (multi-core systems). Consider visit-
ing a neighbor of a candidate. This is typically after a check and
then an update to a visiting map to ensure that a vertex is calcu-
lated once (Line 15-16). During parallel neighbor expansion, the
visiting map is shared by all workers to indicate if a vertex has been
visited. Since multiple threads may access the shared visiting map
concurrently, locking or lock-free algorithms are required if we still
want to ensure a vertex is visited only once. However, this approach
involves a significant scalability bottleneck, because it leads to lock
contention and sequentialization of updating the visiting map.

Arxiv ’22, 2022, Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren

1
3

2 5

8

7

6

4

4
2

5 1

3

8

7

6

index level reorder

1
2
3
4
5
6
7
8

old id

5
3
8
1
2
4
6
7

ranked

1
2
3
4
5
6
7
8

new id

1’s data 3’s data 7’s data 8’s data

1’s storage 2’s storage 3’s storage

optimized structure

0 2 3 5 6

2 5 1 1 2 6

4’s data 5’s data 6’s data 7’s data 8’s data

standard structure

CSR format

vertex index

edge id

data vectors

4 5 6 7 8vertex ids

Figure 11: Example of neighbor grouping and hierarchical

data storage. Vertices are ranked according to their in-degree.
Vertices are first reordered into new ids according to their ranks.
High ranked vertices are stored in an optimized index where every
vertex’s neighbors’ data are stored in consecutive locations right
after its own data to make expanding cache-friendly. Other low
ranked vertices are stored in a standard index where the graph
index and data vectors are stored separately.

We observe that the ANN search algorithm is still correct even
if a vertex is calculated multiple times because the local candidates
are guaranteed to be merged back to the global priority queue and
the visiting map is also guaranteed to have eventual consistency
the next time of global synchronization. Furthermore, by inserting
memory fences, cache coherence further ensures that the updated
visiting map is visible to other cores. Due to the potential out-
of-order execution in processors, modern multi-core processors
provide fence instructions as a mechanism to override their default
memory access orders. In particular, we issue a fence after a thread
updates the visitingmap to guarantee a processor has completed the
distance computation of the corresponding vertex and has updated
the visiting map (otherwise, there is no guarantee the updated
visiting map is visible to other cores before next step of global
synchronization).

By doing the loosely synchronized local search, we observe that
the search algorithm only performs a very small percentage of
additional distance computations (less than 5%) for SIFT1M (and
similar for other datasets) with 8-way parallelism. This reduces the
overhead from synchronization by 10% and allows us to avert the
issue of non-scaling locking across the multi-threading search. This
optimization was also considered by Leiserson and Schardl [44]
(termed as "benign races") for their parallel breadth-first search al-
gorithm. Furthermore, we use a bitvector to implement the visiting
map instead of a byte-array. This optimization allows the cache to
hold the largest possible portion of the visiting map and therefore
improves the data locality for memory accesses.
Cache Friendly Neighbor Grouping. When a feature vector is
loaded into memory for distance computation, modern CPU archi-
tectures actually automatically load vectors from nearby memory
locations as well. Our neighbor grouping technique taps into this
feature to mitigate the two levels of irregularity mentioned in Sec-
tion 3.

First, Speed-ANN flattens the graph indices by placing the em-
beddings of neighbor vertices in consecutive memory, which would
avoid one-level of implicit memory addressing and enables a thread
to pre-fetch neighbor feature vectors once an active node is selected.
Second, Speed-ANN also regroups nodes, such that vertices that are
likely to be visited during the graph traversal are already pre-load

Table 3: Characterization of datasets. Dim. denotes the dimen-
sion of the feature vector of each point, #base denotes the number
of points, and #queries denotes the number of queries.

Dataset Dim. #base #queries
SIFT1M 128 1M 10K
GIST1M 960 1M 1K
DEEP10M 96 10M 10K
SIFT100M 128 100M 10K
DEEP100M 96 100M 10K

into the CPU memory and cache. Together, these two optimizations
increase the cache hit rate and help speed up the search process.

One caveat of this approach is that it introduces additional mem-
ory consumption, because two neighbor lists may share the same
vertex as a common neighbor. It is therefore may require more
memory consumption than the original approach. To avoid increas-
ing the memory consumption, Speed-ANN takes a hierarchical ap-
proach by regrouping only a subset of vertices. In particular, Speed-
ANN divides a graph to a two-level index as shown in Figure 11,
where only the top-level vertices have their neighbors flattened and
stored in consecutive memory, and the bottom-level index stores
other vertices using the standard structure. In this work, we explore
two strategies to graph division: Degree-centric, which puts high
in-degree nodes to the top-level of the indices. The intuition is that
high in-degree nodes are more frequently accessed, and therefore
improving their locality would benefit the most for the overall
search efficiency. Frequency-centric, which exploits query dis-
tribution to figure out which nodes are more frequently accessed
and puts those frequently accessed nodes into an optimized index.
Section 5 evaluates both strategies and shows that Speed-ANN ’s
neighbor grouping strategy brings 10% performance improvements
with selecting only 0.1% vertices as the top level for a dataset with
100M vertices.

5 EVALUATION

This evaluation proves that Speed-ANN can significantly reduce
the ANN search latency with the proposed effective parallel opti-
mizations.
Evaluation Objectives. This evaluation targets five specific eval-
uation objectives: (1) latency—demonstrating that Speed-ANN out-
performs existing ANN search algorithms (NSG [22], HNSW [52],
and a parallel version of NSG) by up to 76.6× speedup in terms
of the latency without any precision compromise; (2) scalabil-
ity—confirming that Speed-ANN scales well on modern multi-core
CPU architectures with up to 64-cores; (3) optimization effects—
studying the performance effect of our key optimizations (parallel
neighbor expansion, staged search, redundant-expansion aware
synchronization, and cache friendly neighbor grouping) on overall
latency, distance computations, synchronization overhead, etc; (4)
portability—proving Speed-ANN has good portability by evaluat-
ing it on other multi-core CPU architectures; (5) practicability—
showing that Speed-ANN is practical, applicable to extremely large
datasets (e.g., bigann) with billions of points and outperforming
an existing GPU implementation (i.e. Faiss) by up to 6.0× speedup
with 32 CPU cores.
Implementation.Anatural question is if our implementations can
leverage any existing graph libraries (e.g., Ligra [63]); however, it

Speed-ANN: Low-Latency and High-Accuracy Nearest Neighbor Search via Intra-Query Parallelism Arxiv ’22, 2022,

0.90 0.95 1.000.5

1

2

4

8
SIFT1M

Speed-ANN-32T
NSG
HNSW

0.90 0.95 1.001

4

16

64

256

1024
GIST1M

Speed-ANN-32T
NSG
HNSW

0.90 0.95 1.000.5

2

8

32

DEEP10M

Speed-ANN-32T
NSG
HNSW

0.90 0.95 1.001

4

16

64
SIFT100M

Speed-ANN-32T
NSG
HNSW

0.90 0.95 1.001

4

16

64

256
DEEP100M

Speed-ANN-32T
NSG
HNSW

Recall@100

La
te

nc
y

(m
s)

Figure 12: Latency (ms) comparison among Speed-ANN , NSG, and HNSW on five datasets. Speed-ANN use 32 threads.

turns out this is very difficult due to multiple reasons: First, ANN al-
gorithms do not pass messages between vertices. The computation
only happens between a vertex and the query point. Second, ANN
algorithms need to do computation with vector values. Third, ANN
algorithms need to keep output results sorted. This requires extra
efforts to maintain the results especially after synchronization be-
tween workers. Fourth, existing libraries’ optimization techniques
for general graph processing are usually not suitable for ANN al-
gorithms. For example, Ligra [63] can switch between push and
pull modes according to the number of active vertices. However,
in ANN algorithms, the number of active vertices is capped by the
expected output number of nearest neighbors, making the switch-
ing never happen. Besides, Speed-ANN runs in a semi-synchronous
pattern with delayed synchronization among workers, which is
different from the BSP model [68] with strict synchronization af-
ter every parallel step. Therefore, we have our high-performance
implementation of those algorithms without using existing graph
processing libraries. Our proposed ANN algorithms are written in
C++ compiled by Intel C++ Compiler 2021.4.0 with “-O3” option.
We use OpenMP 5.0 to handle the intra-query parallelism.
Platform and Settings. Unless otherwise specified, all major ex-
periments are conducted on Intel Xeon Phi 7210 (1.30 GHz) with 64
cores and 109 GB DRAM (KNL for short). Speed-ANN sets the aver-
age update position ratio as 0.8 for SIFT1M, GIST1M, and SIFT100M,
and 0.9 for DEEP10M and DEEP100M.
Datasets. This evaluation uses five datasets that are characterized
in Table 3. SIFT1M andGIST1M are from the datasets1 introduced by
Jégou et al. [36]; SIFT100M is sampled from the SIFT1B (bigann) in-
troduced by Jégou et al. [37]; DEEP10M and DEEP100M are sampled
from DEEP1B2 which is released by Babenko and Lempitsky [9].
These are common datasets for ANN algorithms evaluation [22].
Baselines. Speed-ANN is compared with two state-of-the-art se-
quential ANN search implementations, NSG3 [22] and HNSW4 [52].
NSG employs a search algorithm called Best-First Search, and
HNSW uses its own best-first search algorithm corresponding to
its hierarchical index. The hyperparameters used for building their
indices are set as default values as long as the authors provided
them. Otherwise, several values are tested and the best performance
is reported.

For NSG, we use its optimized version of searching for SIFT1M,
GIST1M, and DEEP10M, and its normal version for SIFT100M and
DEEP100M because of memory limit. We also implement a Naïve
Parallel NSG that parallelizes neighbor visiting during expansion.

1http://corpus-texmex.irisa.fr/
2https://sites.skoltech.ru/compvision/noimi/
3https://github.com/ZJULearning/nsg
4https://github.com/nmslib/hnswlib

Avg. 90.0% 95.0% 99.0%0
2
4

40
80

SIFT100M
Speed-ANN-32T
NSG

Avg. 90.0% 95.0% 99.0%0
2
4

100
200
300 DEEP100M

Speed-ANN-32T
NSG

Percentile

La
te

nc
y

(m
s)

Figure 13: Percentile latency of Speed-ANN & NSG. Recall:

0.999.

5.1 Search Latency Results

Figure 12 compares the latency of Speed-ANN , NSG, and HNSW.
Speed-ANN uses 32 threads while NSG and HNSW are sequential
approaches. The query latency is the average latency of all queries,
i.e., it equals the total searching time divided by the number of
queries. All methods search the 100 nearest neighbors for every
query (i.e. 𝐾 = 100). The measure Recall@100 is calculated ac-
cording to Formula 1 with 𝐾 = 100, which means the ratio of
ground-truth nearest neighbors in searching results for each query.
The value of Recall@100 is the average of all queries. All recalls
mentioned in this section are Recall@100 if not specified.

Figure 12 shows that Speed-ANN outperforms NSG and HNSW
on all five datasets. Speed-ANN ’s latency advantage increases with
the growth of recall requirement, and it performs significantly bet-
ter for high recall cases (e.g., from 0.995 to 0.999). For the cases
of Recall@100 (R@100) being 0.9, 0.99, and 0.999, on all five datasets,
Speed-ANN achieves 2.1×, 5.2×, and 13.0× geometricmean speedup
over NSG, and 2.1×, 6.7×, and 17.8× over HNSW, respectively. As
the recall becomes 0.999, Speed-ANN achieves up to 37.7× speedup
over NSG on DEEP100M, and up to 76.6× speedup over HNSW on
GIST1M. Speed-ANN achieves significantly better performance for
high recall situations mainly because of two reasons. First, Speed-
ANN ’s parallel neighbor expansion effectively reduces convergence
steps (comparing with NSG) because it is not easily trapped at a
local optimum and can explore a local region more quickly than a
sequential search. This is particularly critical for a large graph (e.g.,
DEEP100M) to achieve high recall, where a query can more easily
get stuck at a local optimum. Second, Speed-ANN has better data
locality from using aggregated L1/L2 cache provided by multiple
threads, in contrast to sequential search where only private cache
can be used. Further profiling results are provided in Section 5.3.

Impact on Tail Latency. For online inference, tail latency is as
important, if not more, as the mean latency. To see if Speed-ANN
provides steady speed-ups, we collect the 90th percentile (90%tile),

http://corpus-texmex.irisa.fr/
https://sites.skoltech.ru/compvision/noimi/
https://github.com/ZJULearning/nsg
https://github.com/nmslib/hnswlib

Arxiv ’22, 2022, Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren

1 2 4 8 16 32 640.5

2

8

32

GIST1M

R@100 0.99
R@100 0.995
R@100 0.999

1 2 4 8 16 32 640.5

2

8

SIFT100M

R@100 0.99
R@100 0.995
R@100 0.999

1 2 4 8 16 32 640.5

2

8

32

DEEP100M

R@100 0.99
R@100 0.995
R@100 0.999

Number of threadsSp
ee

du
p

ov
er

 1
 th

re
ad

Figure 14: Speedup of Speed-ANN over 1 thread on five

datasets.

DEEP1M DEEP10M DEEP100M0
5

10
15
20

100
120
140
160 Recall 0.999

Speed-ANN-32T
NSG
HNSW

DEEP1M DEEP10M DEEP100M0

1

2

3

4

La
te

nc
y

(m
s)

Recall 0.900
Speed-ANN-32T
NSG
HNSW

DEEP1M DEEP10M DEEP100M0
5

10
15
20
25

Recall 0.990
Speed-ANN-32T
NSG
HNSW

Figure 15: Scalability with varied graph sizes for Speed-ANN ,

NSG, and HNSW on DEEP1M, DEEP10M, and DEEP100M.

Speed-ANN uses 32 threads.
95th percentile (95%tile), and 99th percentile (99%tile) latency from
running NSG and Speed-ANN on SIFT100M and DEEP100M in
Figure 13. The results show that while NSG’s 99%tile increases
significantly by 154% and 91% for SIFT100M and DEEP100M, re-
spectively, the Speed-ANN ’s 99%tile increases only by 31% and
19% over its average for SIFT100M and DEEP100M, respectively.
Speed-ANN leads to a relatively smaller increase in tail latency pre-
sumably because intra-query parallel search is particularly effective
in reducing latency on long queries.

5.2 Scalability Results

Scaling with An Increasing Number of Threads. Figure 14 re-
ports the speedup of 1- to 64-thread Speed-ANN over 1-thread on
three datasets for three selected recall (0.99, 0.995, and 0.999), re-
spectively. It shows that this scalability increases as the target recall
grows because of the increased distance computations that offers
more parallelism opportunities. The geometric mean speedup of
all datasets for the highest recall (0.999) is 9.6×, 11.1×, and 9.2×
for 16-, 32-, and 64-thread, respectively. Speed-ANN only scales
to 16 threads for SIFT1M because SIFT1M is too small without
enoughworkload for more threads. Speed-ANN demonstrates super-
linear speedup (up to 16 threads) for 0.999 recall on GIST1M and
DEEP100M. This phenomenon will be further analyzed in Sec-
tion 5.3. Speed-ANN does not scale well for 64 threads due to various
reasons. For datasets with high dimensional vectors (e.g. GIST1M),
32-thread Speed-ANN has saturated memory bandwidth already.
For others (e.g., SIFT1M, DEEP10M, and DEEP100M), extra dis-
tance computations of too many unnecessary expansions gradually
dominate overall execution.
Scaling with An Increase of the Graph Sizes. Our experiments
also evaluate the scalability with varied dataset sizes (DEEP1M,
DEEP10M, and DEEP100M) for Speed-ANN , NSG, and HNSW, re-
spectively. Figure 15 reports the latency results of Speed-ANN , NSG,
and HNSW for the recall of 0.9, 0.99, and 0.999, in which Speed-
ANN uses 32 threads. Speed-ANN constantly outperforms NSG and
HNSW, and the heavier workload, the better performance Speed-
ANN shows. More specifically, with the growth of dataset size, the
speedup of Speed-ANN over NSG and HNSW increases. For exam-
ple, when the recall is 0.999, the speedup of Speed-ANN over NSG
grows from 5.9𝑥 to 27.8𝑥 when the dataset size changes from 1M
to 100M. This trend becomes increasingly obvious with the growth

0.90 0.95 1.001

4

16

64

256

Recall@100

La
te

nc
y

(m
s)

Speed-ANN-Exhaust

NSG-32T
Speed-ANN-NoStaged
Speed-ANN-NoSync
Speed-ANN-Adaptive

(a) Latency (ms)

0.90 0.95 1.001

10

100

1000

10000

Recall@100

C
on

ve
rg

en
ce

 S
te

ps

Speed-ANN-Exhaust

NSG-32T

Speed-ANN-NoStaged

Speed-ANN-NoSync
Speed-ANN-Adaptive

(b) Convergence steps

0.90 0.95 1.00

108

109

Recall@100

D
is

ta
nc

e
C

om
pt

.

Speed-ANN-Exhaust
NSG-32T

Speed-ANN-NoStaged
Speed-ANN-NoSync

Speed-ANN-Adaptive

(c) Distance computation

NoStaged NoSync Adaptive Exhaust0

50

100

%
 o

f R
un

tim
e Expand Merge Seq

(d) Runtime breakdown

Figure 16: Synchronization study w/ 32 threads on

DEEP100M.

of the recall. The results reflect that Speed-ANN is particularly ef-
fective and offers more speedups than existing search methods for
larger graphs.

5.3 Analysis Results

This section performs a series of experiments to show where Speed-
ANN ’s improvements come from. It first compares Speed-ANN ’s per-
formance with several alternative parallel search schemes. (i) NSG-
32T: This config extends NSGwith parallel neighbor expansion only
(e.g., M=1). (ii) Speed-ANN -NoStaged: This config is Speed-ANN but
without using the staged search process. (iii) Speed-ANN -NoSync:
This config performs parallel neighbor expansion but never synchro-
nizes among workers until the very end. (iv) Speed-ANN -Exhaust:
This config uses an exhaustive search to preprocess the dataset
and obtain the proper synchronization settings. It should have the
best latency performance, although requiring more than ten hours
of tuning for the given dataset. (v) Speed-ANN -Adaptive: This is
the configuration described in Section 4, which adopts redundant-
expansion aware synchronization.

For this comparison, we report results on DEEP100M dataset
with 32 threads in Figure 16. Other datasets and threads show the
same trend, thus we omit them due to the space constraint.
Effects on Latency. Figure 16a first reports the latency results of
all five versions when we change recall from 0.90 to 1.00. Compared
with NSG-32T, Speed-ANN -NoStaged has 4.9× speedup on average
for all recall cases, because of the convergence iterations reduction
from parallel neighbor expansion. Speed-ANN -Exhaust has an extra
1.5× speedup over Speed-ANN -NoStaged mainly due to its reduc-
tion in synchronization optimization. Speed-ANN -Exhaust achieves
slightly better performance than Speed-ANN -Adaptive (e.g., 1.1×
speedup). However, Speed-ANN -Adaptive does not require the ex-
pensive offline tuning process as Speed-ANN -Exhaust.
Effects on Convergence Iterations. Figure 16b profiles the con-
vergence steps of the five parallel methods. Each point is averaged
from all queries. NSG-32T results in the most steps of convergence;
while Speed-ANN -NoStaged results in the fewest. All three ver-
sions of Speed-ANN result in comparable convergence steps to
Speed-ANN -NoStaged that are much less than NSG-32T. This is

Speed-ANN: Low-Latency and High-Accuracy Nearest Neighbor Search via Intra-Query Parallelism Arxiv ’22, 2022,

1 2 4 8 16 32 64
0.5

1.0

1.5

Number of threads

Sp
ee

du
p

Degree-Centric
Frequency-Centric

Figure 17: Speedup of Speed-
ANN ’s neighbor grouping on

DEEP100M for recall 0.999.

1 2 4 8 16 32 64600
800

1000

10000
12000

1
2
4
8
16
32

Number of threads

C
om

pt
. /

 L
1

m
is

se
s

(M
illi

on
s)

Speedup

Compt.

L1 Misses
Speedup

Figure 18: Speed-ANN ’s

L1 misses, speedup over

1-thread, and distance com-

putation w/ recall 0.999 on

DEEP100M.

because Speed-ANN -NoStaged employs a fixed and relatively large
number of multiple paths throughout the searching, resulting in
the most aggressive exploring. Speed-ANN -Adaptive and Speed-
ANN -Exhaust adopt staged search, which slightly increases the
convergence steps but significantly reduces distance computations.
Meanwhile, Speed-ANN -NoSync suffers more divergence compared
to Speed-ANN -Adaptive and Speed-ANN -Exhaust.
Effects on Distance Computation. Figure 16c profiles the num-
ber of distance computations for those five methods. Speed-ANN -
NoStaged with a fixed value of 𝑀 = 32 leads to more distance
computations than NSG-32T, Speed-ANN -Exhaust, and Speed-ANN -
Adaptive to achieve the same recall (especially for low recall cases).
While completely removing synchronization, Speed-ANN -NoSync
has themost distance computations than others. However, as shown
in Figure 16a, it still achieves lower latency than Speed-ANN -NoStaged
because synchronization overhead can dominate the total search
time when the number of parallel workers is large.
Effects on Synchronization Overhead. Figure 16d reports the
execution time breakdown of our four approaches. It splits the
whole execution time into three parts: Expanding part (Expand),
Merging part (Merge), and Sequential part (Seq). Expand denotes
the parallel phase of a query that workers expand their unchecked
candidates. It consists of computing distances and inserting visited
neighbors into their queues. Merge denotes the phase that workers
merge their local queues into a global queue after they complete
expanding. It reflects the major synchronization overhead. Other
sequential execution of a search is included in Seq. All results are
for recall 0.999. Figure 16d shows that redundant-expansion aware
synchronization strategy effectively mitigates the synchronization
overhead, allowing Speed-ANN -Adaptive to achieve a similar por-
tion of synchronization overhead as Speed-ANN -Exhaust.
Effects of Neighbor Grouping. Our fully optimized Speed-ANN -
32T also includes another optimization, i.e. neighbor grouping.
Figure 17 shows that our two proposed strategies (degree-centric
and frequency-centric) outperform no-grouping by up to 1.22× and
1.21× speedup, respectively, when we change the thread numbers
from 1 to 64. This speedup mainly comes from the reduction of the
last-level cache miss and TLB (translation lookaside buffer) cache
miss. This profiling result is omitted due to the space constraint.
Super-linear SpeedupObservation. Section 5.2 shows that Speed-
ANN results in an interesting super-linear speedup (up to 16 threads)
for 0.999 recall on GIST1M and DEEP100M. Figure 18 reports three
profiling results, distance computations, L1 cache misses, and per-
formance speedup for DEEP100M when changing the thread num-
bers from 1 to 64. The left x-axis shows the first two profiling

0.90 0.95 1.000.5

2

8

32

Recall@100

La
te

nc
y

(m
s)

Speed-ANN-16T
NSG
HNSW

(a) Latency (ms)

1 2 4 8 160.5

1

2

4

8

Number of threads

Sp
ee

du
p

ov
er

 1
 th

re
ad

R@100 0.99
R@100 0.995
R@100 0.999

(b) Speedup

Figure 19: Portability study: DEEP100M on Skylake.

1 2 4 8 16 32 640

100

200

300

400

1

2

4

8

16

C
PS

’s
 L

at
en

cy
 (m

s) SIFT1B

Latency (ms)
Speedup

NSG’s latency

1 2 4 8 16 32 640

100

200

300

400

1

2

4

8

16DEEP1B

Speedup

NSG’s latency

Latency (ms)
Speedup

Number of threads
Figure 20: Performance comparison of Speed-ANN and NSG

on SIFT1B (bigann) and DEEP1B. Speed-ANN ’s speedup is over
its 1-thread. Recall is 0.9.
results while the right x-axis shows the last one. It shows that as
we increase the number of threads, the L1 cache misses and dis-
tance computations first decrease and then increase. This causes
the super-linear speedup for the cases whose thread numbers are
less than 16. Distance computation shows this trend because: on
the one hand, parallel neighbor expansion helps avoid the search
from being trapped by local minimal candidates and quickly pick up
promising searching paths for more nearest neighbors; on the other
hand, too many exploring threads cause unnecessary expansion of
non-promising candidates, increasing distance computations. L1
cache miss shows this trend because multi-threads increase the
total size of L1 cache.

5.4 Portability Evaluation

To evaluate the portability, Speed-ANN is also tested on Intel Sky-
lake architecture, Xeon Gold 6138 (2.0 GHz) with 20 cores and 187
GB DRAM (Skylake for short). For the sake of space saving, only
results on DEEP100M are presented as other datasets show the
same trend. Figure 19a compares the latency of Speed-ANN , NSG,
and HNSW, in which, Speed-ANN uses 16 threads. It shows a similar
trend as previous, i.e., Speed-ANN outperforms NSG and HNSW for
all recall. For 0.9, 0.99, and 0.999 cases, Speed-ANN achieves 1.7×,
4.5×, and 12.9× speedup over NSG, and 1.3×, 5.3×, and 9.7× over
HNSW, respectively. Figure 19b evaluates Speed-ANN ’s scalability.
Similarly, target recall 0.999 can achieve the best speedup over 1
thread, and speedup for 0.999 is 4.9× and 6.3× for 8 threads and 16
threads, respectively.

5.5 Practicality Evaluation

This section evaluates Speed-ANN ’s practicality with two case stud-
ies: 1) evaluating it on very large datasets, SIFT1B (bigann) and
DEEP1B that contain over 1 billion data vectors; 2) comparing it
with a state-of-the-art GPU implementation.
Billion-Scale Datasets. This experiment is conducted on a par-
ticular machine with Xeon Gold 6254 (3.10 GHz) 72 cores and 1.5
TB memory because of the large memory requirement. Figure 20

Arxiv ’22, 2022, Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren

Table 4: Latency comparison of Speed-ANN and Faiss-GPU

on five datasets. Lt. means Latency. OOM means out of memory.
Faiss-GPU’s index format is IVFFLat. Speed-ANN uses 32 threads.

Datasets Faiss-GPU w/ IVFFlat Speed-ANN -32T on KNL
R@100 Lt. (ms.) R@100 Lt. (ms.)

SIFT1M 0.52 0.87 0.91 0.61

GIST1M 0.36 7.25 0.90 1.21

DEEP10M 0.62 5.79 0.90 0.96

SIFT100M OOM OOM 0.90 2.00

DEEP100M OOM OOM 0.90 1.91

compares the latency of Speed-ANN and NSG. Speed-ANN uses up
to 64 threads, and the recall target is 0.9. When using 64 threads,
Speed-ANN outperforms NSG with 11.5× and 16.0× speedup for
SIFT1B and DEEP1B, respectively. As we increase the number of
threads, Speed-ANN shows sub-linear speedup because of the well-
known NUMA effect (this machine has 4 NUMA domains). These
results indicate the effectiveness of our method in speeding up the
search process on billion-scale datasets.
Compare with a GPU Implementation.We also compare Speed-
ANN with a GPU-based large-scale ANN search algorithm [39] in
Faiss library [1]. The GPU experiments are conducted on anNVIDIA
Tesla P100 with CUDA 10.2. Faiss is set to have one query in every
batch, because we focus on reducing the online query latency to
meet stringent latency requirement. Table 4 shows the latency
comparison results on five datasets. Speed-ANN uses 32 threads on
KNL. For the SIFT100M and DEEP100M, Faiss-GPU complains of
out-of-memory errors. For other datasets, Speed-ANN outperforms
Faiss-GPUwith 1.4× to 6.0× speedup andmuch better recall, which
indicates that Speed-ANN can effectively achieve faster search speed
than GPU-based search algorithms on CPUs, which are often much
cheaper than GPUs.

6 RELATEDWORK

This section describes prior efforts closely related to our work.
Graph-based ANN. Navigating Spreading-out Graph (NSG) [22]
is one of the state-of-the-art graph-based indexing methods. It is a
close approximation of Monotonic Relative Neighborhood Graph
(MRNG) that ensures a close-logarithmic search complexity with
limited construction time. NSG (and many other graph-based meth-
ods [6, 18, 26, 29, 38, 51, 52], e.g., FANNG [29], NSW [51], and
HNSW [52]) rely on best-first search to process queries. Other
graph-based methods include [10, 11, 19, 34, 45–47, 60, 77]. In con-
trast to these efforts that mostly focus on indexing building, our
work for the first time unveils the real bottleneck of intra-query
graph search, and significantly reduces search latency (particularly
for billion-scale graphs) with multiple advanced architecture-aware
parallel techniques.
Non-Graph based ANN Methods. Hashing-based methods [2,
3, 17, 33] map data points into multiple buckets with a certain
hash function such that the collision probability of nearby points
is higher than the probability of others. Quantization-based meth-
ods [23, 35, 70, 72, 73] (e.g., IVF [36], and IMI [8]) compress vec-
tors into short codes to reduce the number of bits needed to store
and compute vectors. Faiss [39] is implemented by Facebook with
produce quantization (PQ) methods. Tree-based methods (e.g., KD-
tree [64] and R* tree [12]) hierarchically split the data space into

lots of regions that correspond to the leaves of a tree structure, and
only search a limited number of promising regions. Flann [55] is a
library based on KD-tree. Graph-based methods have been proved
to outperform these non-graph-based methods by checking fewer
data points to achieve the same recall [7, 20, 22, 46]. Another line
of work that is closely related to Speed-ANN is to accelerate ANN
search by varied accelerators, e.g., FPGA [75] and GPU [39].
Parallel Graph Systems. Many graph engines and frameworks
have been developed in the past decade. Some of them are shared-
memory, focusing on processing in-memory datasets within a com-
putation node, e.g., Galois [57], Ligra [63], Polymer [76], Graph-
Grind [67], GraphIt [78], and Graptor [69]. Some are distributed
systems, e.g., Pregel [50], GraphLab [48], and PowerGraph [25].
Some efforts focus on out-of-core designs (e.g., GraphChi [42]
and X-Stream [61]) and process large graphs with disk support.
Many graph frameworks are also on GPUs, such as CuSha [40],
Gunrock [71], GraphReduce [62], and Graphie [28]. These graph
systems are either based on a vertex-centric model [50] or its vari-
ants (e.g., edge-centric [61]). These models are in the strict BSP
model [68]. Different from them (and other asynchronous graph
traversal efforts [27, 28]), Speed-ANN uses delayed synchronization
that is in the spirit of stale synchronization [30] where workers
are running in an asynchronous fashion before synchronization,
which makes it possible to retain high parallelism and also a low
amount of distance computations. Moreover, as aforementioned in
the implementation, due to the uniqueness of ANN, it is challenging
to migrate many of these system designs to Speed-ANN directly.
Generic Search Schemes.Many efforts aim to parallelize various
search schemes (e.g., BFS [63], DFS [56], and Beam search [53]).
Although Speed-ANN ’s parallel neighbor expansion design is in-
spired by prior parallel search algorithms on graphs, our work has
a very different focus and aims to: 1) identify that ANN’s conver-
gence bottleneck comes from the fact that ANN requires to find
many targets that may be (or not be) present in the graph—a search
scenario that is very different from many previous graph search
problems; 2) several optimizations specifically tailored for reducing
the number of distance computations and synchronization over-
head from parallel neighbor expansion, such as staged search and
redundant-expansion aware synchronization.

7 CONCLUSION

This work looks into the problem of accelerating graph-based ANN
search on multi-core systems, performing comprehensive studies to
reveal multiple challenges and opportunities to exploit intra-query
parallelism for speeding up ANN search. Based on the detailed
performance characterization, we propose Speed-ANN , a similar-
ity search algorithm that takes advantage of multi-core CPUs to
significantly accelerate search speed without comprising search
accuracy. Speed-ANN consists of a set of advanced parallel designs,
including parallel neighbor expansion, staged search, redundant-
expansion aware synchronization, loosely synchronized visit map,
and cache friendly neighbor grouping, systematically addressing all
the identified challenges. Evaluation results show that Speed-ANN
outperforms two state-of-the-art methods NSG and HNSW by up
to 37.7× and 76.6× on a wide range of real-world datasets ranging
from million to billion data points.

Speed-ANN: Low-Latency and High-Accuracy Nearest Neighbor Search via Intra-Query Parallelism Arxiv ’22, 2022,

REFERENCES

[1] 2021. Faiss Library. https://github.com/facebookresearch/faissm.
[2] Alexandr Andoni and Piotr Indyk. 2006. Near-Optimal Hashing Algorithms

for Approximate Nearest Neighbor in High Dimensions. In 2006 47th annual
IEEE symposium on foundations of computer science (FOCS’06). IEEE, 459–468.
https://doi.org/10.1109/FOCS.2006.49

[3] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Lud-
wig Schmidt. 2015. Practical and Optimal LSH for Angular Distance. In Pro-
ceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 1 (NIPS) (Montreal, Canada) (NIPS’15, Vol. 28), C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.). MIT Press, Cam-
bridge, MA, USA, 1225–1233. https://proceedings.neurips.cc/paper/2015/file/
2823f4797102ce1a1aec05359cc16dd9-Paper.pdf

[4] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache Lo-
cality Is Not Enough: High-Performance Nearest Neighbor Search With Product
Quantization Fast Scan. Proceedings of the VLDB Endowment 9, 4 (2015), 288–299.

[5] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. 2018. HD-
Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search
in High-Dimensional Spaces. Proceedings of the VLDB Endowment 11, 8 (2018),
906–919.

[6] Sunil Arya and David M Mount. 1993. Approximate Nearest Neighbor Queries
in Fixed Dimensions.. In SODA, Vol. 93. 271–280.

[7] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2017. ANN-
Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algo-
rithms. In International Conference on Similarity Search and Applications (SISAP).
Springer, 34–49.

[8] Artem Babenko and Victor Lempitsky. 2014. The Inverted Multi-Index. IEEE
Transactions on Pattern Analysis and Machine Intelligence 37, 6 (2014), 1247–1260.

[9] Artem Babenko and Victor Lempitsky. 2016. Efficient Indexing of Billion-Scale
Datasets of Deep Descriptors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[10] Dmitry Baranchuk, Dmitry Persiyanov, Anton Sinitsin, and Artem Babenko.
2019. Learning to Route in Similarity Graphs. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, Long Beach,
California, USA, 475–484. http://proceedings.mlr.press/v97/baranchuk19a.html

[11] KG Renga Bashyam and Sathish Vadhiyar. 2020. Fast Scalable Approximate
Nearest Neighbor Search for High-dimensional Data. In 2020 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 294–302. https://doi.org/10.
1109/CLUSTER49012.2020.00040

[12] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-Tree: An Efficient and Robust Access Method for Points and Rect-
angles. In Proceedings of the 1990 ACM SIGMOD international conference on Man-
agement of data. 322–331.

[13] Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Lan-
dolin, and Adam M Phillippy. 2015. Assembling Large Genomes With Single-
Molecule Sequencing and Locality-Sensitive Hashing. Nature Biotechnology 33, 6
(2015), 623–630.

[14] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason
Li, Chuanjie Liu, Lintao Zhang, and Jingdong Wang. 2018. SPTAG: A library for
fast approximate nearest neighbor search.

[15] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems, Boston, MA, USA, September 15-19, 2016, Shilad Sen,Werner
Geyer, Jill Freyne, and Pablo Castells (Eds.). ACM, 191–198.

[16] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google News Personalization: Scalable Online Collaborative Filtering. In Proceed-
ings of the 16th International Conference on World Wide Web (WWW). 271–280.

[17] MayurDatar, Nicole Immorlica, Piotr Indyk, and Vahab S.Mirrokni. 2004. Locality-
Sensitive Hashing Scheme Based on p-Stable Distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geometry (Brooklyn, New York,
USA) (SCG ’04). Association for Computing Machinery, New York, NY, USA,
253–262. https://doi.org/10.1145/997817.997857

[18] DW Dearholt, N Gonzales, and G Kurup. 1988. Monotonic Search Networks for
Computer Vision Databases. In Twenty-Second Asilomar Conference on Signals,
Systems and Computers, Vol. 2. IEEE, 548–553.

[19] Shiyuan Deng, Xiao Yan, KW Ng Kelvin, Chenyu Jiang, and James Cheng. 2019.
Pyramid: A General Framework for Distributed Similarity Search on Large-scale
Datasets. In 2019 IEEE International Conference on Big Data (Big Data). IEEE,
1066–1071. https://doi.org/10.1109/BigData47090.2019.9006219

[20] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2019. Return of the Lernaean Hydra: Experimental Evaluation of Data Series
Approximate Similarity Search. Proceedings of the VLDB Endowment 13, 3 (2019),
403–420.

[21] Cong Fu and Deng Cai. 2016. Efanna: An Extremely Fast Approximate Nearest
Neighbor Search Algorithm Based on Knn Graph. arXiv preprint arXiv:1609.07228
(2016).

[22] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search with the Navigating Spreading-out Graph. Proceedings
of the VLDB Endowment (VLDB) 12, 5 (Jan. 2019), 461–474. https://doi.org/10.
14778/3303753.3303754

[23] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product
Quantization for Approximate Nearest Neighbor Search. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2946–2953.

[24] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity Search in
High Dimensions via Hashing. Proceedings of the VLDB Conference (VLDB) 99, 6
(1999), 518–529.

[25] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12). USENIX Association, Hollywood, CA, 17–30. https://www.usenix.
org/conference/osdi12/technical-sessions/presentation/gonzalez

[26] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. 2011.
Fast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph.
In Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence - Volume Volume Two (Barcelona, Catalonia, Spain) (IJCAI’11). AAAI
Press, 1312—-1317.

[27] Minyang Han and Khuzaima Daudjee. 2015. Giraph Unchained: Barrierless
Asynchronous Parallel Execution in Pregel-Like Graph Processing Systems. Pro-
ceedings of the VLDB Endowment 8, 9 (2015), 950–961.

[28] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. 2017. Graphie: Large-
Scale Asynchronous Graph Traversals on Just a GPU. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE,
233–245.

[29] Ben Harwood and Tom Drummond. 2016. FANNG: Fast Approximate Nearest
Neighbour Graphs. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 5713–5722.

[30] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. 2013. More Effective
Distributed Ml via a Stale Synchronous Parallel Parameter Server. In Advances in
Neural Information Processing Systems (NIPS). 1223–1231.

[31] Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen, Martin Theobald, and Gerhard
Weikum. 2012. KORE: Keyphrase Overlap Relatedness for Entity Disambigua-
tion. In Proceedings of the 21st ACM International Conference on Information and
Knowledge Management (CIKM). 545–554.

[32] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-Aware Locality-Sensitive Hashing for Approximate Nearest Neighbor
Search. Proceedings of the VLDB Endowment 9, 1 (2015), 1–12.

[33] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing (Dallas, Texas, USA) (STOC ’98). Association
for Computing Machinery, New York, NY, USA, 604–613. https://doi.org/10.
1145/276698.276876

[34] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Rav-
ishankar Krishnawamy, and Rohan Kadekodi. 2019. DiskANN: Fast Accu-
rate Billion-point Nearest Neighbor Search on a Single Node. In Advances in
Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran As-
sociates, Inc., 13771–13781. https://proceedings.neurips.cc/paper/2019/file/
09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf

[35] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2008. Hamming Embedding
and Weak Geometric Consistency for Large Scale Image Search. In European
conference on computer vision. Springer, 304–317.

[36] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2011), 117–128. https://doi.org/10.1109/TPAMI.2010.57

[37] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.
Searching in One Billion Vectors: Re-Rank With Source Coding. In 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
861–864.

[38] Zhongming Jin, Debing Zhang, Yao Hu, Shiding Lin, Deng Cai, and Xiaofei He.
2014. Fast and Accurate Hashing Via Iterative Nearest Neighbors Expansion.
IEEE Transactions on Cybernetics 44, 11 (2014), 2167–2177. https://doi.org/10.
1109/TCYB.2014.2302018

[39] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[40] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha:
Vertex-Centric Graph Processing on GPUs. In Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing (Vancouver,
BC, Canada) (HPDC ’14). Association for Computing Machinery, New York, NY,
USA, 239–252. https://doi.org/10.1145/2600212.2600227

[41] Brian Kulis and Kristen Grauman. 2009. Kernelized Locality-Sensitive Hashing
for Scalable Image Search. In 2009 IEEE 12th International Conference on Computer
Vision (ICCV). IEEE, 2130–2137.

https://doi.org/10.1109/FOCS.2006.49
https://proceedings.neurips.cc/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
http://proceedings.mlr.press/v97/baranchuk19a.html
https://doi.org/10.1109/CLUSTER49012.2020.00040
https://doi.org/10.1109/CLUSTER49012.2020.00040
https://doi.org/10.1145/997817.997857
https://doi.org/10.1109/BigData47090.2019.9006219
https://doi.org/10.14778/3303753.3303754
https://doi.org/10.14778/3303753.3303754
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://proceedings.neurips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/TCYB.2014.2302018
https://doi.org/10.1109/TCYB.2014.2302018
https://doi.org/10.1145/2600212.2600227

Arxiv ’22, 2022, Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren

[42] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-
Scale Graph Computation on Just a PC. In 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 12). USENIX Association,
Hollywood, CA, 31–46. https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/kyrola

[43] Quoc V. Le and Tomás Mikolov. 2014. Distributed Representations of Sentences
and Documents. In Proceedings of the 31th International Conference on Machine
Learning, ICML 2014, Beijing, China, 21-26 June 2014 (JMLR Workshop and Con-
ference Proceedings, Vol. 32). JMLR.org, 1188–1196.

[44] Charles E. Leiserson and Tao B. Schardl. 2010. A work-efficient parallel breadth-
first search algorithm (or how to cope with the nondeterminism of reducers).
In SPAA 2010: Proceedings of the 22nd Annual ACM Symposium on Parallelism
in Algorithms and Architectures, Thira, Santorini, Greece, June 13-15, 2010, Fried-
helm Meyer auf der Heide and Cynthia A. Phillips (Eds.). ACM, 303–314.

[45] Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. 2020. Im-
proving Approximate Nearest Neighbor Search through Learned Adaptive Early
Termination. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Comput-
ing Machinery, New York, NY, USA, 2539–2554. https://doi.org/10.1145/3318464.
3380600

[46] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2020. Approximate Nearest Neighbor Search on High Dimensional
Data – Experiments, Analyses, and Improvement. IEEE Transactions on Knowledge
and Data Engineering 32, 8 (2020), 1475–1488. https://doi.org/10.1109/TKDE.
2019.2909204

[47] Peng-Cheng Lin and Wan-Lei Zhao. 2019. Graph based Nearest Neighbor Search:
Promises and Failures. arXiv preprint arXiv:1904.02077 (2019).

[48] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. 2014. Graphlab: A new framework for parallel machine
learning. arXiv preprint arXiv:1408.2041 (2014).

[49] Qin Lv, Moses Charikar, and Kai Li. 2004. Image Similarity Search With Compact
Data Structures. In Proceedings of the Thirteenth ACM International Conference on
Information and Knowledge Management (CIKM). 208–217.

[50] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
Scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (Indianapolis, Indiana, USA) (SIGMOD ’10).
Association for Computing Machinery, New York, NY, USA, 135–146. https:
//doi.org/10.1145/1807167.1807184

[51] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate Nearest Neighbor Algorithm Based on Navigable Small World
Graphs. Information Systems 45 (2014), 61–68. https://doi.org/10.1016/j.is.2013.
10.006

[52] Yury A Malkov and Dmitry A Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE
Transactions on Pattern Analysis and Machine Intelligence 42, 4 (2020), 824–836.
https://doi.org/10.1109/TPAMI.2018.2889473

[53] Clara Meister, Tim Vieira, and Ryan Cotterell. 2020. Best-First Beam Search.
Transactions of the Association for Computational Linguistics 8 (2020), 795–809.

[54] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Esti-
mation of Word Representations in Vector Space. In 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[55] Marius Muja and David G Lowe. 2009. Fast Approximate Nearest Neighbors
With Automatic Algorithm Configuration. International Conference on Computer
Vision Theory and Applications (VISAPP) 2, 331–340 (2009), 2.

[56] Maxim Naumov, Alysson Vrielink, and Michael Garland. 2017. Parallel Depth-
First Search for Directed Acyclic Graphs. In Proceedings of the Seventh Workshop
on Irregular Applications: Architectures and Algorithms. 1–8.

[57] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight
Infrastructure for Graph Analytics. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13).
Association for Computing Machinery, New York, NY, USA, 456–471. https:
//doi.org/10.1145/2517349.2522739

[58] Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian Allen
Ding, Ankit Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Semantic
Product Search. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi,
and George Karypis (Eds.). ACM, 2876–2885.

[59] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman.
2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching. In
2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
1–8.

[60] Liudmila Prokhorenkova and Aleksandr Shekhovtsov. 2020. Graph-based Nearest
Neighbor Search: From Practice to Theory. In Proceedings of the 37th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Re-
search, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, Virtual, 7803–7813.

http://proceedings.mlr.press/v119/prokhorenkova20a.html
[61] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-

Centric Graph Processing Using Streaming Partitions. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 472–488. https://doi.org/10.1145/2517349.2522740

[62] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten Schwan.
2015. GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Sys-
tems. In SC’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 1–12.

[63] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Process-
ing Framework for Shared Memory. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Shenzhen, China)
(PPoPP ’13). Association for Computing Machinery, New York, NY, USA, 135–146.
https://doi.org/10.1145/2442516.2442530

[64] Chanop Silpa-Anan and Richard Hartley. 2008. Optimised KD-Trees for Fast
Image Descriptor Matching. In 2008 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 1–8.

[65] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[66] Danny Sullivan. 2018. FAQ: All about the Google RankBrain algo-
rithm. https://searchengineland.com/faq-all-about-the-new-google-rankbrain-
algorithm-234440.

[67] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. 2017. Graph-
Grind: Addressing Load Imbalance of Graph Partitioning. In Proceedings of the
International Conference on Supercomputing (Chicago, Illinois) (ICS ’17). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 16, 10 pages.
https://doi.org/10.1145/3079079.3079097

[68] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (Aug. 1990), 103–111. https://doi.org/10.1145/79173.79181

[69] Hans Vandierendonck. 2020. Graptor: Efficient Pull and Push Style Vectorized
Graph Processing. In Proceedings of the 34th ACM International Conference on Su-
percomputing (Barcelona, Spain) (ICS ’20). Association for Computing Machinery,
NewYork, NY, USA, Article 13, 13 pages. https://doi.org/10.1145/3392717.3392753

[70] Runhui Wang and Dong Deng. 2020. DeltaPQ: Lossless Product Quantization
Code Compression for High Dimensional Similarity Search. Proceedings of the
VLDB Endowment 13, 13 (2020), 3603–3616.

[71] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D. Owens. 2016. Gunrock: A High-Performance Graph Processing Library
on the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (Barcelona, Spain) (PPoPP ’16). Association
for Computing Machinery, New York, NY, USA, Article 11, 12 pages. https:
//doi.org/10.1145/2851141.2851145

[72] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards
Query Fusion for Structured and Unstructured Data. Proceedings of the VLDB
Endowment 13, 12 (2020), 3152–3165.

[73] Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N
Holtmann-Rice, David Simcha, and Felix Yu. 2017. Multiscale Quantization
for Fast Similarity Search. In Advances in Neural Information Processing Systems
(NIPS). 5745–5755.

[74] YubaoWu, Ruoming Jin, and Xiang Zhang. 2014. Fast and Unified Local Search for
Random Walk Based K-Nearest-Neighbor Query in Large Graphs. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of Data. ACM,
1139–1150.

[75] Jialiang Zhang, Soroosh Khoram, and Jing Li. 2018. Efficient Large-Scale Ap-
proximate Nearest Neighbor Search on OpenCL FPGA. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018. IEEE Computer Society, 4924–4932.

[76] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-Aware Graph-
Structured Analytics. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (San Francisco, CA, USA) (PPoPP
2015). Association for Computing Machinery, New York, NY, USA, 183–193.
https://doi.org/10.1145/2688500.2688507

[77] Minjia Zhang and Yuxiong He. 2019. GRIP: Multi-Store Capacity-Optimized High-
Performance Nearest Neighbor Search for Vector Search Engine. In Proceedings of
the 28th ACM International Conference on Information and Knowledge Management
(Beijing, China) (CIKM ’19). Association for Computing Machinery, New York,
NY, USA, 1673–1682. https://doi.org/10.1145/3357384.3357938

[78] Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib
Kamil, Saman Amarasinghe, and Julian Shun. 2020. Optimizing Ordered Graph
Algorithms with GraphIt. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization (San Diego, CA, USA) (CGO
2020). Association for Computing Machinery, New York, NY, USA, 158–170.
https://doi.org/10.1145/3368826.3377909

[79] Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Yingya Zhang, Xiaofeng Ren,
and Rong Jin. 2021. Visual Search at Alibaba. CoRR abs/2102.04674 (2021).
arXiv:2102.04674

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://doi.org/10.1145/3318464.3380600
https://doi.org/10.1145/3318464.3380600
https://doi.org/10.1109/TKDE.2019.2909204
https://doi.org/10.1109/TKDE.2019.2909204
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1016/j.is.2013.10.006
https://doi.org/10.1016/j.is.2013.10.006
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2517349.2522739
http://proceedings.mlr.press/v119/prokhorenkova20a.html
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/2442516.2442530
https://searchengineland.com/faq-all-about-the-new-google-rankbrain-algorithm-234440
https://searchengineland.com/faq-all-about-the-new-google-rankbrain-algorithm-234440
https://doi.org/10.1145/3079079.3079097
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/3392717.3392753
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/2688500.2688507
https://doi.org/10.1145/3357384.3357938
https://doi.org/10.1145/3368826.3377909
https://arxiv.org/abs/2102.04674

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Approximate Nearest Neighbors
	2.2 Graph-based ANN Search

	3 Complexities in Graph-based ANN Search for Optimizations
	3.1 Overview of Graph-based ANN Search
	3.2 Complexities for Optimizations

	4 Design of Speed-ANN
	4.1 Parallel Neighbor Expansion
	4.2 Staged Speed-ANN to Avoid Over-Expansion
	4.3 Redundant-Expansion Aware Synchronization
	4.4 Additional Optimizations

	5 Evaluation
	5.1 Search Latency Results
	5.2 Scalability Results
	5.3 Analysis Results
	5.4 Portability Evaluation
	5.5 Practicality Evaluation

	6 Related Work
	7 Conclusion
	References

