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MemHC: An Optimized GPU Memory Management
Framework for Accelerating Many-body Correlation
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The many-body correlation function is a fundamental computation kernel in modern physics computing ap-

plications, e.g., Hadron Contractions in Lattice quantum chromodynamics (QCD). This kernel is both compu-

tation and memory intensive, involving a series of tensor contractions, and thus usually runs on accelerators

like GPUs. Existing optimizations on many-body correlation mainly focus on individual tensor contractions

(e.g., cuBLAS libraries and others). In contrast, this work discovers a new optimization dimension for many-

body correlation by exploring the optimization opportunities among tensor contractions. More specifically, it

targets general GPU architectures (both NVIDIA and AMD) and optimizes many-body correlation’s memory

management by exploiting a set of memory allocation and communication redundancy elimination opportu-

nities: first, GPU memory allocation redundancy: the intermediate output frequently occurs as input in the

subsequent calculations; second, CPU-GPU communication redundancy: although all tensors are allocated on

both CPU and GPU, many of them are used (and reused) on the GPU side only, and thus, many CPU/GPU

communications (like that in existing Unified Memory designs) are unnecessary; third, GPU oversubscription:

limited GPU memory size causes oversubscription issues, and existing memory management usually results

in near-reuse data eviction, thus incurring extra CPU/GPU memory communications.

Targeting these memory optimization opportunities, this article proposes MemHC, an optimized system-

atic GPU memory management framework that aims to accelerate the calculation of many-body correlation

functions utilizing a series of new memory reduction designs. These designs involve optimizations for GPU

memory allocation, CPU/GPU memory movement, and GPU memory oversubscription, respectively. More

specifically, first, MemHC employs duplication-aware management and lazy release of GPU memories to

corresponding host managing for better data reusability. Second, it implements data reorganization and

on-demand synchronization to eliminate redundant (or unnecessary) data transfer. Third, MemHC exploits

an optimized Least Recently Used (LRU) eviction policy called Pre-Protected LRU to reduce evictions and

leverage memory hits. Additionally, MemHC is portable for various platforms including NVIDIA GPUs and

AMD GPUs. The evaluation demonstrates that MemHC outperforms unified memory management by 2.18×
to 10.73×. The proposed Pre-Protected LRU policy outperforms the original LRU policy by up to 1.36×
improvement.1
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1 INTRODUCTION

Many-body correlation functions are widely used in scientific physics systems, such as Lat-

tice quantum chromodynamics (QCD) [9–11]. Correlation function calculation is critical for

physics observables (e.g., predicting properties of light nuclei [14]) and is broadly explored in

Jeffersion Lab (Jlab), Facility for Antiproton and Ion Research in Europe (FAIR), and Japan Pro-

ton Accelerator Research Complex (J-PARC) facilities [6]. A typical instance of many-body cor-

relation is the hadronic correlation function in complex many-particle systems, involving quarks

and gluons enclosed in mesons and baryons. Hadronic correlation calculation converts a series

of quark-propagation-describing interactions among particles into many undirected graphs that

have hadrons as vertices and gluons as edges, followed by performing a graph contraction on every

graph that reduces graph edges one after another until only two vertices are left. Each reduction

of an edge is a tensor contraction between hadron nodes, which is dubbed hadron contraction.

Computing many-body correlation functions is both computation and memory intensive be-

cause it involves not only a single hadron contraction but also a large number of hadron con-

tractions with specific dependencies among them. Each hadron contraction can be formalized as a

batched matrix multiplication in the meson system or a batched tensor contraction in the baryon sys-

tem that is already computation intensive. In particular, the number of hadron contractions scales

as the factorial of the number of quark degree of freedom, which makes computing many-body

correlation functions memory intensive.

To overcome the significant expense of the calculations, a general solution is to leverage many-

core architectures like GPUs [47, 49]. For example, the Redstar system [11], a well-known QCD

simulation, for the first time calculates many-body correlation functions on many-core architec-

tures. The Redstar system translates a statistic form of a many-body correlation function to an

executable computation kernel, which consists of a series of hadron contractions. This work takes

Redstar as an example and studies the new opportunities of optimizing many-body correlation on

general GPU accelerators.

Many existing efforts that focus on optimizing tensor contractions [2, 7, 22, 23, 29, 31, 33, 39, 42]

can be applied to many-body correlation; however, they usually result in sub-optimal perfor-

mance. This is because all of these efforts focus on optimizing individual large tensor contractions,

while many-body Lattice QCD correlation is featured with a great number of not large tensor

contractions.

To address this issue, this work fully explores specific attributes of many-body correlation (i.e.,

a great many tensor contractions) and discovers new optimization opportunities. According to

the physical observations and thorough programming analysis, redundant memory operations

happen frequently in several areas: memory allocations, CPU/GPU memory communications, and

memory oversubscriptions. First, in contrast to other many-body problems [15, 34, 43], overlapped
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reduction paths among multiple contraction graphs result in a large number of repeated data

(including initial and intermediate data), which brings memory allocation redundancy. Second,

many-body correlation functions create many intermediate objects on CPU, and these objects

also need to participate in computations on GPU. Accessing these intermediate objects from CPU

and GPU interleavely causes frequent data movements between CPU and GPU. Finally, with the

growing number of intermediate data, limited GPU memory on a single GPU inevitably leads to

memory oversubscriptions [24, 27]. The randomly repeated data in hadron contractions easily

cause evictions of previously used data that will be utilized very soon (near-reuse), raising redun-

dant memory evictions and even data thrashing. Therefore, a general GPU memory optimization

technique is required to control memory operations and accelerate hadron contractions.

This work proposes a memory management framework for many-body correlation on general

GPU architectures (including NVIDIA GPUs and AMD GPUs) called MemHC to eliminate redun-

dant memory operations. The novel optimizations mainly consist of three aspects. The first in-

novation is an integrated redundancy elimination mechanism to manage GPU memory from the

host. Due to the large memory footprint of a single hadron node (37MB for a meson with 384

tensor size, 280MB for a baryon with 128 tensor size), current redundancy elimination techniques

to operate within GPU registers [20, 37], cache [3, 13, 16], and shared memory [8, 20] are not

practical in correlation functions. Targeting this challenge, MemHC leverages reusability to elim-

inate redundant memory allocation by applying duplication-aware management and overwriting

lazy-released memory based on building mappings between CPU and GPU memory. Furthermore,

MemHC explores and overcomes the limitations of Unified Memory management, which results

in redundant CPU/GPU communications when passing references of GPU objects back to the host.

The second new insight is a Pre-Protected eviction policy to minimize memory evictions by uti-

lizing the specific storage formats, i.e., vectors, to predict data access and pre-protect all reusable

data. Unlike other popular eviction policies [5, 19, 25, 38] to estimate the reuse distances of repeated

data, the pre-protected eviction policy recognizes all repeated data in advance to completely avoid

redundant evictions. The third contribution is the robust portability for general GPU architectures,

especially for AMD GPUs using the ROCm framework, which currently does not support Unified

Memory management.

The key contributions of this work can be summarized as follows:

• This work presents a GPU memory management framework, MemHC, to eliminate multi-

ple memory redundancies. It efficiently facilitates reduction optimizations in memory allo-

cations, CPU/GPU communications, and memory oversubscriptions.

• MemHC proposes memory reusability optimizations, including duplication-aware manage-

ment and overwriting lazy-released memory, which yield benefits on allocation reductions.

• MemHC applies data reorganization based on contiguous memory locations and employs

on-demand synchronization for CPU/GPU memory movement reductions, particularly

overcoming memory communication redundancy produced by the Unified Memory

management.

• MemHC exploits a novel Least Recently Used (LRU) eviction policy named Pre-Protected

LRU eviction policy to protect reusable data in advance. This approach improves the

memory hit rate and avoids data thrashing.

• MemHC illustrates robust portability on different platforms including NVIDIA GPUs and

AMD GPUs.

This work evaluates general correlation functions based on synthesized random benchmarks

with various parameters and data distributions. To further validate the practical performance,

MemHC is extensively integrated into a real-world application and evaluated by three physical
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correlation functions. The evaluation demonstrates that MemHC outperforms NVIDIA’s Unified

Memory management by 2.18× to 10.73× speedup. The proposed Pre-Protected eviction policy

achieves up to 1.36× higher GFLOPS than the original LRU eviction policy. Furthermore, the per-

formance of real correlation functions is improved up to 6.12× more than using Unified Memory

management.

We organize the rest of the article as follows. Section 2 introduces the background of many-

body correlation functions, the Redstar system, data characteristics, and computation patterns.

Section 3 analyzes multiple memory redundancies and reusability opportunities. Section 4 illus-

trates an overview of the MemHC framework. Subsequently, we explain detailed techniques about

memory reduction optimizations in Section 5. Section 6 demonstrates the evaluation observations

and experimental results. Section 7 introduces related works, and Section 8 discusses future works.

Finally, Section 9 concludes the article.

2 BACKGROUND

Computing many-body correlation functions, such as Lattice QCD, is a critical and challenging

topic in the modern scientific field. Calculation of correlation functions is crucial for generating

physics observables (e.g., predicting properties of light nuclei [14]) and is relevant to experiments

planned for Jlab, FAIR, and J-PARC facilities [6]. Therefore, accelerating the many-body correlation

function on GPU memory management has research and practical significance in nuclear physics.

Correlation function calculations are constituted by a large number of hadron contractions. One

of the current popular lattice QCD systems, the Redstar system [9], focuses on solving correlation

functions on many-core architectures efficiently. Taking accelerating hadron contraction as a crit-

ical user study about calculations of many-body correlation functions, this work is constructed

and evaluated based on the Redstar system. This section mainly introduces the theoretical knowl-

edge of correlation functions, analyzes the motivations to speed up hadron contraction on GPUs,

explains the workflow of the Redstar system, and illustrates the kernel computation patterns of

hadron contractions.

2.1 Correlation Functions

Based on the nature of the complicated many-particle systems, calculating many-body correla-

tion functions is very important for generating physical observables. Different physics scenarios

require different types of correlation functions. To be more specific, correlation function compu-

tation consists of many wick-contractions, which in turn can be turned into matrix multiplication

in meson systems or tensor contraction in baryon systems. The rank of the tensors depends on

the number of quarks in a hadronic node.

A correlation function between annihilation and creation operator χ at Euclidean t and t ′ is able

to define the energy of an eigenstate of the Hamiltonian of a quantum field theory. The definition

of the correlation function is:

C (t ′, t ) = 〈χ (t ′)χ† (t )〉. (1)

When inserting Ĥ |k〉 = Ek |k〉, as a complete set of eigenstates of the Hamiltonian, the correla-

tion function represents an accumulation of all states:

C (t , t ′) =
∑

k

|〈χ |k〉|2e−Ek (t ′−t ) . (2)

Each state has the same quantum numbers as the source operators. Take a two-point meson

correlation function as an example; the definition is:

C (t , 0) = Trdist spin[M12 (t )U 23 (t , 0)M34 (0)D41 (0, t )]. (3)
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Fig. 1. Example of Correlation Functions. Figure (a) describes quark propagation in a simple meson system;

Figure (b) represents quark propagation in a complex meson system.

In Equation (2), calculating the correlation function includes evaluating the quark field path-

integral, inserting the out-product of the distillation operators, and keeping track of smearing

labels as indices. The correlation function can be abstracted in Figure 1(a), and the edges between

two vertices describe quark propagation. Another more complicated meson correlation function

is shown in Figure 1(b). The theoretical definition is:

C (t , 0) =
∑

p2,p3 |p
cp2,p3M

12 (�p, t )P25 (t , 0)M56 (�p2, 0)P63 (0, 0)M34 (�p3, 0)P41 (0, t ). (4)

In practical physics scenarios, calculating many-body correlation functions on an ensemble of

gauge fields has a high time cost to solve a great number of hadron contractions in physical obser-

vations. For instance, the hadron contraction number achieves more than 10,000 in a two-meson

f0 system, while a baryon system is able to generate more than 100,000 hadron contractions. The

computation cost of computing correlation functions grows rapidly due to the intermediate data.

Producing intermediate data continuously also takes up significant memory resources. Moreover,

the current advanced calculations of multi-meson correlation functions need about 10M core-hours

for one ensemble in the gauge field. Therefore, improving the calculation functions is challenging

and has great practical benefits in real-world scientific applications.

2.2 Redstar System

The Redstar system is designed to evaluate many-body correlation functions on multi-core ar-

chitectures including CPU and GPU. As shown in Figure 2, the system consists of several stages

including generating contraction graphs, producing multiple types of hadron nodes in distillation

space, operating hadron contractions, and calculating correlation function results. The input of

the Redstar system is a list of correlation functions. Redstar_gen_graph package translates the

physical correlation functions to a contraction graph. In the contraction graph, vertices represent

hadron nodes with various quarks. Then edges describe the interactions between hadron nodes.

Subsequently, the system classifies different types of hadron nodes, relying on their physical defini-

tions, then constructs hadron nodes to complete contraction graphs by using sub-modules hadrom
and colorvec.

Another critical package, redstar_npt, computes the contraction graphs on multiple time

slices and produces execution queues to guide hadron contraction computations. Some graph re-

organization operations are applied to improve the correlation function computation. Moreover,

this package conducts evaluations to measure the graph-level optimizations. The sub-module

redstar_npt results in computation configurations and a queue of hadron contractions, which

will be the input of the hadron package. Hadron contractions are generated in a fixed execution

order. Sub-module redstar_npt is mainly implemented on CPU using parallel techniques such as

OpenMP. The hadron package manages vectors to carry out hadron contractions. Hadron contrac-

tions take advantage of general GPU architectures.
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Fig. 2. Overview of the Redstar System: Sub-modules, Workflow and Hierarchical Data Structures. The Red-

star system involves several stages: contraction graph generation (Redstar_gen_graph), building hadron

nodes (colorvec and hadrom), and hadron graph contraction solutions (redstar_npt, hadron). The hadron
package aims to accomplish hadron contractions. The Redstar system abstracts topologically contraction

graphs from correlation functions, then reduces contraction graphs to various configurations. In one config-

uration, vector pairs cooperate to calculate contractions, which consists of independent hadron nodes. The

hadron node includes multiple batches and associated spins.

2.3 Data Hierarchy

The Redstar system constructs hierarchical data structures. Figure 2 illustrates the whole picture

of the multi-level data. When computing correlation functions, the Redstar system produces a

sequence of hadron contractions from contraction graphs. Every single graph undergoes a graph

contraction process during which one edge after another in the graph is reduced until two nodes

are left. Each reduction of an edge corresponds to a tensor contraction.

Based on the definitions in Section 2.1, calculating correlation functions can be abstracted to

compute a series of contractions generated from all the graphs on multiple time slices. All the

graphs are topologically the same across different time slices but with different hadron nodes as

their vertices. Thus, all the hadron contractions are the same types of calculations with different

hadron nodes for different time slices.

One time slice includes various vectors. The order of vectors is determined by the execution

queue, which is generated by redstar_npt. Contractions occur between two associated elements

in a pair of vectors, like the first elements of Vector 1 and Vector 2 in Figure 2. A pair of vectors

incorporate to accomplish contraction calculations.

Each vector consists of multiple independent hadron nodes, and a hadron node can be

formalized as a tensor T (abr ) (ijk ), where abr represents spin and ijk represents distillation space.

A contraction happens on both spin and spatial indices, and each spin component itself is a

spatial tensor. To carry out a contraction between two hadron nodes, a single resulting spin of

the destination nodes comes from multiple spins of these two hadron nodes. For example, for two
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Fig. 3. Computation Patterns of an Individual Hadron Contraction. Two input hadron nodes conduct a

batched contraction, then accumulate to generate a batched output hadron node.

mesons (0, 0) is generated from these four pairs of spins: (0, 0) (0, 0), (0, 1) (1, 0), (0, 2) (2, 0) and (0,

3) (3, 0). Therefore, a hadron contraction can be expressed as a sequence of matrix multiplications

or a sequence of tensor contractions. From here we refer to these arrays of tensor contractions as

batched multiplications. Furthermore, a single spin component from the source of a contraction

can appear multiple times in the batched multiplications, e.g., (1, 0) can go to (0, 0) and (1, 0) to

(1, 1). We define these duplicate relations between batch and spins to be overlapped batch-spin

mappings. Take meson systems as an example; the batch size is often 64, while the number of

spins is 16. Four elements in the batch point to the same destination spin.

2.4 Kernel Computation Analysis

Compared with conventional graph-based applications including Sparse matrix-vector multiplica-

tion, BFS, and PageRank, there are two specific characteristics in contraction graphs: (1) the entire

calculation consists of a large number of small computation kernels (dense matrix multiplication

or tensor contraction), representing each edge of contraction graphs; (2) the repeated appearance

of the input data and intermediate output data, because of overlapped reduction paths among

multiple contraction graphs to compute one correlation function.

It is well known that matrix multiplication or tensor contraction is already computation in-

tensive. However, the expensive computation cost of many-body correlation results from a large

number of hadron contractions, which leads to memory-intensive kernel computation. This sec-

tion mainly explains the computation patterns of individual hadron contraction and analyzes the

kernel computation of many-body correlation functions.

Take a meson system as an example to illustrate the computation pattern of an individual hadron

contraction in Figure 3. The hadron node is two-dimensional, consisting of 16 spins, and the batch

size will be 64. In the batch layer, each element points to one spin, and four elements point to

the identical spin. Hadron contraction can be formalized as a batched tensor contraction and an

accumulation operation. Input 1 and input 2 represent a pair of hadron nodes as input data. The

mappings between batch and spins are probably different in the two input data. Two hadron nodes

accomplish batched tensor contraction, generating 64 temporal tensors with 16 groups of four

tensors being mapped to a single spin of the output hadron node. The library cuBLAS [1] is applied

to conduct a batched contraction. Subsequently, every single group of the four temporary tensors

is accumulated into a single tensor for one spin of the output.

Allowing for many-body correlation functions, kernel calculation is not only computation in-

tensive but also memory intensive, due to the small size of spins in one hadron node and a large

number of hadron contractions. On the one hand, the rank of the tensor is two and the tensor
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size is often not more than 384 in meson systems. The computation cost of an individual hadron

contraction is not heavy, which is 37MB in size for a single meson. On the other hand, the large

number of hadron nodes requires significant memory capacity. Particularly, the data type is nec-

essarily set to be double complex so as to guarantee the computation precision. Compared with

the limited computation cost of a single kernel, it is more critical to focus on optimizing memory

management for a series of hadron contractions.

3 REDUNDANCY AND REUSABILITY ANALYSIS

Based on the characteristics of computing correlation functions in Section 2, this work figures

out various memory redundancies, which offers optimization opportunities to accelerate many-

body correlation. In particular, there exist multiple types of duplicate data, raising data reusability

chances.

3.1 Memory Redundancy Analysis

Memory redundancies broadly exist in the following aspects: memory allocation, CPU/GPU mem-

ory communication, and memory oversubscription. First, a great many intermediate data are re-

peatedly created and released during the calculations. The naive approach is to create new memory

for each input pair. However, allocate and release operations about identical data are frequently

repeated. Likewise, some new data obtain the same memory size as the released data. Thus, a

number of memory allocations are redundant, which brings high time cost. Second, although the

intermediate data references are created on CPU to determine the executing order, all the kernel

computations exist on GPU. When manipulating parameters on CPU, only the references of in-

termediate data are passed. More specifically, no access operations of data values are performed,

such as readings or writings. Under this situation, memory movements between CPU and GPU are

unnecessary and result in memory redundancy in CPU/GPU communications. Finally, as the num-

ber of hadron nodes increases, more data are repeated in an uncertain order, leading to near-reuse

memory evictions. Therefore, to solve the memory redundancy, a systematic memory optimization

technique is desired for accelerating many-body correlation functions.

3.2 Data Reusability Chances

Data hierarchy illustrates various repeated data from configurations to hadron nodes, shown in

Figure 2. For one original contraction graph, different configurations can be considered as differ-

ent execution iterations. Their computations are consistent, while the data values are updated at a

different time interval. When calculating one contraction graph, data occur repeatedly, which can

be classified as three types: duplicate initial data, repeated intermediate data, and overlapped batch-

spin mappings. For the appearance order of the repeated data, all the three types execute in an

uncertain order. As for repeat frequency, initial data and intermediate data obtain random repeat

frequency. The frequency of overlapped batch-spin mappings is a fixed number, relying on the in-

put requirements (definitions of many-body correlation functions). Overall, repeated data provide

multi-level data reusability chances, which inspires optimizations to fully utilize these repeated

data and improve correlation function calculations.

4 SYSTEM OVERVIEW

According to the previous analysis, repeated data appearances cause broad memory redundancies

and bring data reusability opportunities. The limitations of Unified Memory management [26],

including redundant memory movements and lacking portability in general architectures (e.g.,

AMD GPUs), inspire an optimized memory redundancy mechanism for many-body correlation

functions.
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Fig. 4. System Overview: Optimizations and Associated Techniques. MemHC facilitates memory reduction

managements between loading input data and kernel computation. MemHC proposes reduction optimiza-

tions in three aspects: GPU memory allocation, CPU/GPU communications, and GPU memory oversubscrip-

tion. Techniques involve memory reusability optimizations, data reorganization, on-demand synchronization,

and the Pre-Protected eviction policy.

Therefore, this work proposes MemHC, a GPU memory management framework, which effi-

ciently facilitates a series of memory reduction optimizations to accelerate correlation function

calculations. As shown in Figure 4, this work presents three optimized memory managements,

including memory reusability optimizations for memory allocation, data reorganization and syn-

chronization for CPU/GPU memory communications, and the Pre-Protected eviction for memory

oversubscription, in order to eliminate redundant memory operations and enhance data reusability.

First, MemHC conducts memory reusability optimizations. The optimizations involve duplication-

aware management for repeated data and overwriting lazy-released memory for new intermediate

data. Second, data reorganization is beneficial for both memory allocation and memory movement

from the host to the device. Third, to decrease the latency of CPU/GPU memory communications,

MemHC implements on-demand synchronization to efficiently manage data movements from de-

vice to host. Last, MemHC exploits a novel eviction policy, the Pre-Protected eviction policy, in

order to avoid redundant evictions and data thrashing. Overall, multi-level memory redundancies

motivate the corresponding memory reduction optimizations. The proposed GPU memory man-

agement framework, MemHC, adopts various techniques to leverage data reusability, eliminate

redundant memory operations, and accelerate many-body correlation functions.

5 MEMORY REDUCTION OPTIMIZATIONS

Memory redundancies exist broadly in memory allocations, CPU/GPU communications, and mem-

ory oversubscription. Targeting these redundancy opportunities, this section mainly introduces a

set of associated techniques: (1) memory reusability optimizations including duplication-aware

management and overwriting lazy-released memory, (2) data reorganization based on contigu-

ous memory locations, (3) performing on-demand synchronization, and (4) exploiting the Pre-

Protected eviction policy.

5.1 Memory Reusability Optimization

Memory reusability optimizations involve enhancing the reusability of duplicate data and reducing

redundant allocations of new intermediate data. On the one hand, identical data appear repeatedly

through calculations, as explained in Section 3. On the other hand, the allocating and releasing of
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Fig. 5. Memory Reusability Optimizations: Duplication-aware Management and Overwriting Lazy-released

Memory. During memory allocation, MemHC checks the element_cache table to fetch duplicate data (❶). If

the data is new, the free_pool table will be checked to find lazy-released device memory with the same size

(❷). If it exists, MemHC overwrites the device memory by the new data. When releasing memory, record-

ings are moved from the element_cache table to the free_pool (❸). When memory is oversubscribed, the

recorded data in free_pool are released (❹) before eviction.

intermediate data occur frequently, which brings a large number of redundant memory. These two

types of allocation redundancies inspire MemHC for memory reusability opportunities.

MemHC exploits two targeted memory reusability optimizations for both repeated data and new

intermediate data:

• Duplication-aware management. This work employs duplication-aware management to

reuse duplicate input data. MemHC records the mappings between host objects and associ-

ated device memory locations. The duplication-aware management recognizes repeated input

data by checking the mappings. The allocated device memory is directly fetched for kernel

calculations, without any redundant memory allocations.

• Overwriting lazy-released memory. To further leverage the reusability of intermediate

data, another optimization is overwriting lazy-released memory. Memory release operations

are delayed to be reused by new intermediate data, which obtain the same memory size

as the allocated memory. This approach efficiently reduces both memory allocations and

memory release operations.

Figure 5 illustrates the workflow of memory reusability optimizations. MemHC designs two

memory tables to help implement duplication-aware management and overwriting lazy-released

memory: element_cache table and free_pool table, respectively. The element_cache table

mainly records mapped host objects and the device memory address of active data, while the

free_pool table records device memory information about lazy-released data. When creating new

memory, MemHC first checks the element_cache table to fetch the reusable data (❶). If the data

is not recorded, MemHC will check the free_pool table to find an allocated memory with the

same memory size (❷). If it exists, the memory will be reused and overwritten by new data. When

managing memory release, MemHC erases data in the element_cache table and then adds it to

the free_pool table (❸). Additionally, MemHC first releases the data in the free_pool (❹) dur-

ing memory oversubscription. If memory is still not enough, the Pre-Protected eviction policy will

start addressing memory evictions. In summary, the usage of two memory tables efficiently lever-

ages data reusability and eliminates redundant memory operations. The two memory reusability
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optimizations yield significant benefits on memory allocation reduction. Detailed optimizations

about memory oversubscription will be explained in Section 5.4.

5.2 Data Reorganization

Separated allocations of spins in one hadron node result in redundant memory allocations and

memory movements. As claimed in Section 2, each spin represents a matrix or tensor. Although

the batch layer combines spins together, these spins are created and allocated individually on the

host. Take an example in a typical meson system. The number of spins is set to be 16. When

solving one hadron node, the naive approach produces 16 allocations. Furthermore, calculating a

large number of hadron nodes leads to expensive time cost.

Therefore, MemHC performs data reorganization to reduce memory allocations and movements.

Compared with other data reorganization works [17, 18, 40, 44, 45], MemHC mainly focuses on re-

organizing the internal structure of the hadron node by packing spins together. As for the previous

example, if the number of spins is 16, packing spins is able to reduce the number of allocating spins

from 16 to 1. The number of transferring spin values from host to device can also be reduced. Thus,

the objective is to pack spins together into contiguous memory locations. MemHC applies contigu-

ous data storage formats on both input and output data. After reorganizing the data structure, the

latency of data allocations and transfer can be significantly reduced.

Particularly, reorganizing the hadron node structure requires more batch manipulations than

common batched tensors, due to the overlapped batch-spin mappings. To cover general correlation

functions, these mappings are considered randomly produced. Managing the overlapped batch-spin

mappings is the main challenge of employing contiguous spin memory locations.

To overcome this issue, MemHC records the overlapped batch-spin mappings in advance and

rebuilds the mappings before and after kernel computations. Kernel zgemm in cuBLAS [1] requires

the input data structure to be a two-dimensional array. MemHC translates the allocated contiguous

one-dimensional array to a two-dimensional array, in order to construct a formal input of the zgemm
kernel. The overlapped batch-spin mappings of input data are given as an unpredictable structure,

but the mappings of output data are fixed. MemHC builds the batch-spin mappings of the output

data on the device after accumulation operations.

5.3 On-demand Synchronization

One of the frequent operations in correlation function calculation is to manipulate intermediate

GPU objects by passing their references on the host. On one hand, the execution order of interme-

diate data should be guided by the manager onto the host. On the other hand, calculations about in-

termediate data only occur on the device. More specifically, some parameter manipulations require

managing intermediate data from the host, but these operations are passing references without ac-

cessing values. Thus, it is unnecessary to update host data values during computations. However,

current management frameworks (e.g., unified memory management of NVIDIA) [26, 30, 35, 41]

cannot recognize this situation and produce redundant memory movements when passing refer-

ences. Plenty of passing reference operations on the host incur significant CPU/GPU communica-

tion redundancies.

Targeting this specific situation, this work accomplishes on-demand synchronization to elimi-

nate CPU/GPU communication redundancy. Synchronizations occur when releasing device mem-

ory or accessing associated host data values instead of passing references onto the host. MemHC

handles the intermediate data to stay on GPU until released, without any CPU/GPU communica-

tions. More specifically, MemHC defines intermediate data as a new data type, GPU-only object,

and avoids redundant memory movements about this type of data. As a complementary to the

CPU/GPU communication management, MemHC also implements a synchronization function,
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ALGORITHM 1: LRU Eviction Policy

Require: curr_mem_, lru_mem_, elem_cache_, дpu_only_objs_
1: while curr_mem_ is not enough for new data do

2: mem← lru_mem_.back(); {obtain the host address of the least used object in LRU queue}

3: cache_ptr← elem_cache_.find(mem); {obtain the object from the element_cache table}

4: if cache_ptr is GPU-only then

5: objptr← дpu_only_objs_.find(cache_ptr); {obtain the device address of the evict object}

6: objptr->sync(); {update associated data on the host}

7: end if

8: if cache_ptr is the head of contiguous memory then

9: children← cache_ptr->second.mem.children(); {obtain children elements}

10: for i ← 0 − children.size () do

11: Free child_ptr {free memory of this child}

12: elem_cache_.erase(child_ptr); {remove this child from element_cache table}

13: end for

14: end if

15: update curr_mem_; {update memory information: the current available memory size}

16: lru_mem_.pop_back(); {pop the back of the LRU queue}

17: elem_cache_.erase(cache_ptr); {remove the cache_ptr from element_cache table}

18: end while

which makes data copy controllable for user requirements. Data transfer occurs from device to

host only if the synchronization function is called to update host values.

5.4 Memory Oversubscription: Pre-Protected Eviction

With respect to the limited memory of GPU (e.g., 16GB memory in NVIDIA), memory oversubscrip-

tion is a critical topic in GPU memory management. To eliminate memory eviction redundancy,

MemHC designs a novel algorithm, the Pre-Protected LRU eviction policy, to fully protect reusable

data in advance based on vector forms of input data.

5.4.1 LRU Eviction Policy. To address memory evictions, prior efforts present many eviction

algorithms, including Random Eviction, Most recently used (MRU), LRU, clock with adaptive

replacement (CAR), Clock-Pro, and more complicated replacement methods [5, 25, 38].

The LRU eviction strategy is based on the First In First Out (FIFO) algorithm. The main idea of

the LRU policy is to evict the least recently used elements first. Figure 5 illustrates the pre-process

of the memory evictions. The lazy-released memory in free_pool is freed when device memory

is oversubscribed. MemHC manages an LRU memory queue to contain all active host memory

addresses and makes use of the element_cache table to guide device memory eviction.

Detailed information about the LRU eviction algorithm is shown in Algorithm 1. First, MemHC

checks the current memory size and determines the number of data to evict. Next, it fetches the

back element of the LRU memory queue and finds the mapped value of this fetched host memory

address in element_cache table. Based on the contiguous data formats, if the evicted element is

the head of the contiguous memory, MemHC frees all its children elements. Last, MemHC updates

the element_cache table and the LRU memory queue.

5.4.2 Pre-Protected LRU Eviction Policy. Although LRU is efficient to deal with common GEMM

kernel computations, LRU may cause near-reuse memory evictions when calculating correlation

functions. Figure 6 Example (a) shows that LRU produces redundant evictions. Assume the input
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Fig. 6. Examples of Memory Oversubscription: Compare LRU and Pre-Protected LRU. Input data are (A, B,

C, D) as a first vector and (E, F, A, B) or (E, F, C, D) as a second vector. Example (a) shows that LRU produces

redundant evictions; Examples (b) and (c) show that Pre-Protected LRU protects repeated data in advance,

to avoid redundant evictions.

data are two vectors. The first vector includes (A, B, C, D) and the second one is (E, F, A, B). The

memory size is four. The number with the letter means the order of loading and storing in the

LRU queue. LRU policy selects the data with the smallest number to evict. Data A, B, C, and D are

pushed into the LRU queue in order. When solving the second vector, A and B are evicted first,

then allocated again. The total number of memory evictions is four. As the number of repeated

data grows, it may incur data thrashing.

As for other eviction policies, Clock-Pro [19] considers not only the recently referenced data but

also recently evicted data, which is better than LRU in one-time scan and large loop. CAR [5] is

self-tuned and theoretically more efficient than LRU. These eviction policies implement different

techniques to reduce the redundant evictions but cannot avoid them completely.

This work first implements LRU, as one of the most popular and fundamental algorithms, to

assist many-body correlation calculations. Based on this policy, MemHC designs a Pre-Protected

LRU eviction policy to avoid redundant memory evictions of repeated data by utilizing the vector

form of hadron nodes. The vector form means loading a sequence of data in advance, capturing all

repeated data to completely avoid redundant memory evictions. More specifically, this approach

takes the reuse distance of data within one vector into consideration. The pre-protected data have

the least reused distances. Limiting the prediction range into vector size aims to balance the man-

aging overhead and eviction reductions.

Figure 6 illustrates how the Pre-Protected LRU policy works to eliminate redundant memory

evictions. In Example (b), after loading the second vector in the hadron package, A and B are

found in the LRU memory queue and pre-protected to avoid evictions since they are in both the

first and the second vector. When E comes in, since A and B are protected, the unprotected least

recently used data, C, will be evicted. After solving the second vector, only two data, C and D, are

evicted. Compared with the original LRU policy, our method reduces the evictions from four to

two and increases two memory hits. Example (c) further shows that by changing the repeated data

or their positions, all the reusable data will be checked and protected in the LRU queue in advance,

without producing redundant memory evictions. When the second vector (E, F, C, D) comes in, C

and D will be protected and only A and B are evicted.
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ALGORITHM 2: Pre-Protected LRU Eviction Policy

Require: vector , curr_mem_, lru_mem_, elem_cache_, дpu_only_objs_
1: if curr_mem_ is not enough for new data then

2: for src in vector do

3: if src in elem_cache_ {check each element of vector exists in element_cache table} then

4: src.flag_protected← TRUE; {protect the reusable data}

5: end if

6: end for

7: end if

8: while curr_mem_ is not enough for new data do

9: mem← lru_mem_.back(); {obtain the host address of the least used object in LRU queue}

10: cache_ptr← elem_cache_.find(mem); {obtain the object from the element_cache table}

11: if cache_ptr is protected then

12: lru_mem_.erase(cache_ptr);

13: lru_mem_.push_front(cache_ptr); {avoid evicted in the next iteration}

14: src.flag_protected← FALSE; {avoid over-protection}

15: end if

16: Same statements in LRU Eviction

17: end while

Algorithm 2 shows the Pre-Protected eviction policy. In the beginning, MemHC checks the LRU

memory queue and finds all the repeated data to pre-protect. It adds a flag to label pre-protection.

If the data exists in the element_cache table, MemHC sets the flag to be true. When memory over-

subscription happens, MemHC first checks a pre-protected flag. We design the flag to distinguish

the protected data from other input data. If the data is protected, move it from the end to the front

of the LRU memory queue. In most cases, the GPU memory size is much larger than the data size

of one vector, and unprotected data are enough to evict.

6 EVALUATION

This work aims to accelerate many-body correlation functions based on the optimized GPU mem-

ory management. We build the GPU memory management framework, MemHC, which efficiently

eliminates multiple memory redundancies in calculating correlation functions. The experiments

broadly cover evaluating general correlation functions and real-world physics correlation func-

tions with varying factors on NVIDIA and AMD GPUs.

6.1 Experiment Methodology

Evaluation Setup. To measure the performance for general architectures, MemHC executes on

NVIDIA Pascal P100, NVIDIA Volta V100, AMD MI50, and AMD MI100. P100 has 16GB GPU mem-

ory, while V100, MI50, and MI100 have 32GB GPU memory. Kernel computation is compiled by

CUDA 10.2 on NVIDIA and ROCm 4.3.0 on AMD.

Experiment Design. This work designs three series of experiments, including general correlation

functions with fitted memory, general correlation functions with memory oversubscriptions, and

improved performance in the Redstar system.

To evaluate general many-body correlation functions, this work applies a set of synthesized

benchmarks. The benchmarks broadly cover multiple tensors with varying tensor size, repeated

rate, and vector size. The vector size means the number of independent hadron nodes in one vec-

tor. Repeated rate means the ratio of the data that appears previously to all the data. Repeated rate
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Fig. 7. Overall Performance: Comparing GFLOPS of Unified Memory Management and MemHC on NVIDIA.

Figures (a) and (b) illustrate performance with varying repeated rate: 0%, 12.5%, 25%, 50%, 75%, and 100%.

Figures (d) and (e) show performance with varying vector size: 1, 2, 4, 8, 16, 32. Figures (c) and (f) imply the

speedup of MemHC based on the unified memory. The sizes of evaluated tensors include 384 in Figures (a)

and (b) and 192 in Figures (d) and (e).

means the reusable data in one vector. For instance, a 50% repeated rate represents that half the data

of each vector are repeated; a 100% repeated rate represents that all the data in one vector appear

previously. Each vector has unique data. Particularly, the vector size implies the number of streams

managed by OpenMP on CPU, aiming to reduce the latency of parameter manipulations. Oversub-

scription rate implies the proportion of the oversubscribed data size to the memory capacity.

To further validate the practical performance, this work measures performance improvements

in three real physical correlation functions, in which MemHC is integrated to the Redstar sys-

tem as a user case evaluation. Unified Memory management is evaluated as the baseline for both

general and real-world correlation functions. To evaluate the performance of the Pre-Protected

eviction policy, MemHC compares with the original LRU eviction policy. When GPU memory is

oversubscribed, the performance is sensitive to data distribution. Thus, this work evaluates two

data distributions including uniform distribution and Gaussian distribution.

Evaluation Objectives. Evaluation aims to achieve the following objectives: First, this work

demonstrates that MemHC outperforms unified memory management of NVIDIA, achieving up

to 10.73× speedup in general correlation functions. The performance of the Pre-Protected eviction

policy is improved up to 1.36× compared with LRU. Second, this work presents the generality of

proposed optimizations with varying tensor size, vector size, repeated rate, and oversubscription

rate. Third, this work illustrates the robust portability and widely compares the performance on

multiple platforms, including NVIDIA P100, NVIDIA V100, AMD MI50, and AMD MI100. Last,

MemHC is evaluated by applying it in a real-world system, the Redstar system. Experiment re-

sults show great benefits of MemHC on real physics correlation functions, achieving up to 6.12×
speedup.

6.2 Overall Performance Improvements (without Oversubscriptions)

Figure 7 illustrates the overall improved performance of MemHC on NVIDIA. This work compares

the unified memory management and optimized MemHC. Figures 7(a) and (b) show GFLOPS with
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varying repeated rate: 0%, 12.5%, 25%, 50%, 75%, and 100%. Figures 7(c) and (d) represent GFLOPS

with varying vector size: 1, 2, 4, 8, 16, 32. The evaluated tensor size is 384 as shown in Figures 7(a)

and (c) and 192 in Figures 7(b) and (d). The evaluated results are calculated as an average result

of 10 execution times. Each execution time measures 100 vectors, which are randomly generated.

The vector size is 16 in Figures 7(a) and (b). The repeated rate is 100% in Figures 7(d) and (e). The

number of vectors is 100 in Figure 7.

As shown in Figure 7, MemHC outperforms unified memory management in all cases. When

the tensor size is 384, the speedup achieved is from 2.18× to 3.62× in Figure 7(a) and ranges from

3.26× to 9.67× in Figure 7(b). These experimental results illustrate that the overall performance is

sensitive to the repeated rate. When increasing the repeated rate, the overall performance achieves

more speedup, due to the increasing memory redundancy opportunities.

MemHC yields more benefits when the tensor size is 192. The speedup achieved is from 2.39×
to 3.86× in Figure 7(d) and 2.17× to 10.73× in Figure 7(e). This is because the latency of kernel

computation is sensitive to tensor size. Tensor size is smaller, and memory redundancies have more

impacts on the performance. More memory redundancies offer more optimization opportunities

in MemHC, leading to more speedup shown in Figures 7(c) and (f).

One observation is that MemHC is sensitive to the repeated rate. When the repeated rate is

50%, the performance achieves less than half of that in the case of a 100% repeated rate, shown in

Figure 7(b). This is because the ratio of repeated data affects the amount of memory redundancies.

More repeated data provide more redundant opportunities. Particularly, to eliminate memory re-

dundancy, one of the critical optimizations in MemHC is to leverage reusability of the repeated

data. Therefore, the sensitivity of the repeated rate demonstrates high memory redundancy effi-

ciency of MemHC.

When changing vector size, unified memory management does not show any improvements,

while MemHC achieves obvious speedup. Figure 7(d) shows that MemHC achieves GFLOPS from

1,653.59G/s to 3,541.42G/s, and Figure 7(e) illustrates that GFLOPS improves from 454.53G/s to

2,213.88G/s. This is because a larger vector size produces more redundancies. As explained before,

all cases apply a 100% repeated rate and the number of vectors is fixed. A larger vector size brings

more repeated data in each vector. Compared with unified memory management, experiment re-

sults show great benefits of MemHC on data reusability.

6.3 Performance Analysis in General Correlation Functions

6.3.1 Breakdown Analysis. To further explore the efficiency of MemHC, this section focuses on

breakdown analysis. Figure 8 evaluates the performance of the memory redundancy techniques

separately and compares with the Unified memory management both GFLOPS and speedup. Uni-

fied memory management is evaluated by two cases: non-optimized implementation (Unified
Memory Naive) and an optimized version by data reorganization (Unified Memory Data Reorg).

MemHC is evaluated in the following four cases: (1) MemHC Naive without any optimizations but

explicit implementation; (2) MemHC Data Reorg, which is only optimized by data reorganization;

(3) MemHC Data Reorg + Sync combining data reorganization and on-demand synchronization;

(4) the optimal implementation, MemHC Optimal, with all memory redundancy techniques. Tensor

size is set to be 384, and the vector size varies from 4 to 16 in (a) and the repeated rate varies from

0%, to 100% in (b). The performance results are measured on NVIDIA P100.

Figures 8(a) and (c) show the impact of the repeated rate. When the repeated data is 0%, the

speedup of MemHC Optimal is about 1.25× based on the MemHC Naive. When the repeated rate

is 50%, Explicit MemHC Optimal achieves 2.6× speedup. When applying both data reorganization

and on-demand synchronization, the geometric mean speedup achieved is from 2.5× to 2.8× in

(a) and 2.1× to 2.4× in (c). Figures 8(b) and (d) illustrate the influence of the vector size. Take
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Fig. 8. Optimization Breakdown: Compare Unified Memory Management and MemHC about GFLOPS and

Speedup. Unified memory management is evaluated by two cases: Unified Memory Naive and Unified Mem-

ory Data Reorg. MemHC is evaluated by four cases: naive (MemHC Naive), only optimized by data reorgani-

zation (MemHC Data Reorg), optimized by data reorganization and on-demand synchronization (MemHC

Data Reorg + Sync), and the optimal implementation (MemHC Optimal). Tensor size is 384. The vector size

varies from 4 to 16 and repeated rate varies from 0% to 100%. The performance results are measured on P100.

comparing vector sizes 4 and 16 as an example. The speedup is 1.42× of the MemHC Optimal.

Unified Memory Data Reorg achieves 1.22× speedup and Unified Memory Naive achieves

1.06× speedup. Data reorganization improves both unified memory management and MemHC.

Memory reusability optimizations further enhance performance in MemHC.

As for data reorganization, when the repeated rate is 50%, the performance is not obviously

improved by the MemHC Naive. This is because data reorganization reduces the redundant alloca-

tions and communications no matter whether the data are new or repeated. The reorganization

is to change the data structure in each hadron node, so as to reduce the number of memory oper-

ations from the batch size to one. Additionally, the repeated rate has an impact on the overhead

of data reorganization. If the repeated rate is 50%, half of the hadron nodes are repeated and the

batch-spin mappings will be complicated to extract and rebuild, leading to trivial improvements by

MemHC Naive. If the repeated rate is 0%, applying data reorganization has more improvements than

that of the 50% repeated rate, since there is no overlap in the batch-spin mappings. If the repeated

rate is 100%, all the hadron nodes will be the same and the reorganization is simple. Therefore, the

repeated rate, which determines the complexity of the hadron node’s internal structure, has an

impact on reorganization overhead, further influencing the data reorganization improvements.

6.3.2 Exploring Portability on NVIDIA and AMD GPUs. To further confirm the robust portability

of this work, the performance of MemHC is broadly evaluated on different GPU architectures.

Figures 9(a) and (b) illustrate the speedup of MemHC over the non-optimized explicit implemen-

tation on those four GPU architectures. In most cases, NVIDIA V100 can achieve the best speedup

among others. When tensor size is 192, NVIDIA V100 can achieve up to 4.4× speedup when vector

size is 1. For tensor sizes 192 and 384, NVIDIA V100 can achieve average 3.8× and 1.3× speedups,

respectively.
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Fig. 9. Exploring Portability: GFLOPS and Speedup on AMD MI50, MI100 and NVIDIA P100, V100. Tensor

sizes are 384 and 192. Vector sizes are 1, 2, 4, 8, 16. Figures (a) and (b) show speedup based on non-optimized

explicit implementation. Figures (c) and (d) illustrate GFLOPS.

Fig. 10. Exploring Kernel Computation on AMD MI50 and NVIDIA P100. Figure (a) explores the limitation

of Unified Memory. Extra Data Copy denotes adding redundant data transfer in explicit memory implemen-

tation. Figure (b) compares the performance of zgemm in cuBLAS and hadron contraction kernels on MI50

and P100.

Figures 9(c) and (d) illustrate the MemHC’s GFLOPS on four different GPUs, including AMD

MI50, AMD MI100, NVIDIA P100, and NVIDIA V100, with various settings of vector sizes and

tensor sizes. When the vector size increases from 1 to 16, MemHC increases GFLOPS on all four

architectures. Among them, AMD MI100 and NVIDIA V100 have better GFLOPS than AMD MI50

and NVIDIA P100. When the tensor size increases from 192 to 384, the absolute GFLOPS gap

between them increases.

6.3.3 Exploring CPU/GPU Communications in Unified Memory. Compared with unified mem-

ory management, one critical benefit of MemHC is improving CPU/GPU communications. This

section mainly analyzes the limitations about CPU/GPU communications in unified memory

management.

Current NVIDIA GPUs provide Unified Memory [26, 30], which supports a virtual single ad-

dress accessible for both CPU and GPU. This feature is convenient for users to extend CPU

codes to CUDA codes without caring about data locations. Recent machines (e.g., Tesla P100)

support hardware page faulting and on-demand migration [35, 41]. When evaluating unified

memory management, this work sets the cudaMemAdviseSetReadMostly flag and performs the

cudaMemPrefetchAsync function to manage data locations.

To further validate the limitations of unified memory, this work conducts a series of experi-

ments to explore its bottleneck. Experiments are set up by using the zgemm kernel of cuBLAS.

In Figure 10(a), there are three lines illustrating the performance of zgemm. The blue line simu-

lates the explicit implementation of zgemm. The red line represents the unified memory managed
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Fig. 11. Comparing Multiple Eviction Policies. Pre-Protected eviction policy is compared with Random policy,

MRU, LRU, CAR, and Clock-Pro policies. Measure metrics include GFLOPS and the number of evictions.

Oversubscribe rate changes from 50% to 150%. The tensor size is 384. Vector size is 64. Repeated rate is 50%.

by the GPU driver. Another implementation is the explicit memory management with extra data

copy from device to host when passing references of device objects. As shown in Figure 10(a), the

unified memory management achieves from 61.4% to 70.5% performance of the explicit memory

management. The green line is very close to the red line, which means the extra data copy in

explicit memory management can simulate the case of the unified memory implementation.

In conclusion, the GPU driver produces redundant CPU/GPU communications when passing ref-

erences in the unified memory. The observation further supports the necessary and high efficiency

of defining GPU-only objects to keep intermediate data always on device. Compared with unified

memory management, MemHC efficiently eliminates redundant CPU/GPU communications.

6.3.4 Exploring Hadron Contraction Kernel. To explore the efficiency of the hadron contraction

kernel, this work compares the performance between hadron contractions and zgemm. The zgemm
kernel is well optimized in a widely used library, considered as the peak performance of computing

batched tensor contractions. Figure 10(b) shows the experimental results. In NVIDIA, MemHC

achieves 61.4% to 94.8% performance of zgemm. The average percentage is 73.6%. In AMD, MemHC

is able to achieve 59.6% to 83.7% and the average percentage is 74.5%.

As explained in Section 2, this work implements batched tensor contraction kernel based on

the zgemm. When the tensor size is smaller than 200, the performance of the zgemm kernel and

hadron contraction achieve close performance. Besides the zgemm kernel, the execution latency

of hadron contractions includes parameter manipulations on CPU and accumulating operations

among batches on GPU. As the tensor size becomes larger, the extra overhead increases in the

beginning and generates a stable impact on the whole performance. Both NVIDIA P100 and AMD

MI50 have similar trends, while P100 achieves a stable trend earlier than MI50. The experiment

results illustrate the high efficiency of our hadron contraction implementation.

6.4 Memory Oversubscriptions in General Correlation Functions

This section evaluates the LRU eviction policy in two synthesized datasets including uniform dis-

tribution and Gaussian distribution. The evaluation involves two aspects: comparing with multiple

eviction policies and exploring the performance broadly with different situations.

Comparing with multiple eviction policies. Figure 11 illustrates the comparison between

Pre-Protected LRU and other eviction policies, including Random, MRU, LRU, CAR, and Clock-Pro.

The experiments measure GFLOPS in Figures 11(a) and (b) and the sum of 10 iterations of the

number of evictions in Figures 11(c) and (d). The data distribution includes Uniform distribution

and Gaussian distribution, when the oversubscribe rate ranges from 150% to 250%. Figures 11(a)

and (b) show the GFLOPS results of these eviction policies. Among them, Pre-Protected LRU

shows the best performance in all cases. Overall, Pre-Protected LRU can achieve 1.1× geometric
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Table 1. Performance of Memory Eviction with Varying Vector Size: Hit Rate, GFLOPS on NVIDIA P100

Experiment Results per Iteration (Oversubscription Rate = 50%, Repeated Rate = 1/2)

Vector Size Eviction Policy Allocate Evictions Hit Miss Hit Rate GFLOPS Speedup

8

LRU_UNIFORM 27 8 16 32 33.33% 780.16 1×
LRU_GAUSSIAN 25 6 18 30 37.5% 934.27 1.19×

Pre-Protected LRU 24 4 19 29 39.58% 1,062.84 1.36×

16

LRU_UNIFORM 48 12 35 61 36.45% 1,453.61 1×
LRU_GAUSSIAN 47 12 36 60 37.50% 1,501.1 1.03×

Pre-Protected LRU 44 8 39 57 40.63% 1,907.89 1.31×

32

LRU_UNIFORM 89 22 74 118 38.54% 1,571.02 1×
LRU_GAUSSIAN 87 20 76 116 39.58% 1,605.04 1.02×

Pre-Protected LRU 84 16 79 113 41.15% 1,943.48 1.23×
The results are calculated as the average values per vector of 10 execution loops. The vector size varies from 8 to 32.

Each vector contains half repeated data. Uniform distribution and Gaussian distribution are applied to evaluate LRU.

Pre-Protected LRU protects all repeated data, so data distributions have no impact. Oversubscribed memory is half

of the available memory size. Improvement means the times of the GFLOPS improvements.

Table 2. Performance of Memory Eviction with Varying Oversubscription Rate:

Hit Rate, GFLOPS on NVIDIA P100

Experiment Results per Iteration (Vector Size = 64, Repeated Rate = 1/2)

Oversubscription Eviction Policy Allocate Evictions Hit Miss Hit Rate GFLOPS Speedup

50%

LRU_UNIFORM 178 46 145 239 37.76% 1,554.54 1×
LRU_GAUSSIAN 171 40 152 232 39.58% 1,630.69 1.05×

Pre-Protected LRU 164 32 159 225 41.4% 1,825.28 1.17×

100%

LRU_UNIFORM 216 120 235 341 40.79% 1,568.06 1×
LRU_GAUSSIAN 213 82 238 338 41.31% 1,578.86 1.01×

Pre-Protected LRU 196 64 255 321 44.2% 1,750.12 1.12×

150%

LRU_UNIFORM 251 120 328 440 42.71% 1,575.25 1×
LRU_GAUSSIAN 243 112 336 432 43.75% 1,606.90 1.01×

Pre-Protected LRU 228 96 351 417 45.7% 1,759.57 1.12×
The results are calculated as the average values per vector of 10 execution loops. The oversubscribed memory rate

varies from 50% to 150%; 50% means half of the available memory size is oversubscribed. The vector size is 64. Each

vector contains half repeated data.

mean GFLOPS over other eviction policies in both datasets using various oversubscribe rates.

Figures 11(c) and (d) show the number of evictions of these eviction policies. The evaluation

results illustrate that Pre-Protected LRU has the lowest number of evictions than others in both

synthesized datasets. When the oversubscribe rate is 150%, 200%, and 250%, Pre-Protected LRU

only has a geometric mean 77.2%, 71.6%, and 82.1% number of evictions of other methods in the

uniform dataset, and 79.7%, 78.1%, and 81.6% in the Gaussian dataset, respectively.

Exploring performance in varying situations. This work compares the performance be-

tween the Pre-Protected LRU and original LRU policy with three crucial factors: vector size, over-

subscription rate, and repeated rate. For the Pre-Protected eviction policy, all the repeated data are

protected. Values and positions of the random repeated data have no influence on the performance.

Performance metrics include memory hit rate and GFLOPS. Detailed experiment results are shown

in Tables 1, 2, and 3, which are calculated as the average value of 10 execution loops.

The Pre-Protected LRU achieves improvements from 1.12× in Table 2 to 1.36× in Table 1 in

GFLOPS of the LRU eviction policy. The average improvement is 1.21×. Hit rate improvements

achieved are from 10% to 30% better than the original LRU policy. As the vector size increases

from 8 to 64, the improved performance decreases from 1.36× in Table 1 to 1.17× in Table 2. The

experiment results show that the original LRU policy is sensitive to the vector size. In Table 1,
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Table 3. Performance of Memory Eviction with Varying Repeated Rate: Hit Rate, GFLOPS on NVIDIA P100

Experiment Results per Iteration (Oversubscription Rate = 50%, Vector Size = 64)

Repeated Rate Eviction Policy Allocate Evictions Hit Miss Hit Rate GFLOPS Speedup

1/8

LRU_UNIFORM 196 64 127 257 33.07% 1,346.61 1×
LRU_GAUSSIAN 194 62 129 255 33.59% 1,362.25 1.01×

Pre-Protected LRU 188 56 135 249 35.15% 1,595.54 1.18×

1/4

LRU_UNIFORM 192 60 131 253 34.11% 1,400.95 1×
LRU_GAUSSIAN 190 58 133 251 37.23% 1,427.83 1.02×

Pre-Protected LRU 180 48 143 241 34.64% 1,720.16 1.23×

3/4

LRU_UNIFORM 151 20 172 212 44.79% 1,940.44 1×
LRU_GAUSSIAN 149 18 174 210 45.31% 1,982.20 1.02×

Pre-Protected LRU 148 16 175 209 45.57% 2,257.93 1.16×
The results are calculated as the average values per vector of 10 execution loops. Repeated rate varies from 1/8 to 3/4.

The vector size is 64. Oversubscribed memory is half of the available memory size.

when the tensor size is 8, the performance of Gaussian distribution is obviously better than the

uniform case. This is because Gaussian distribution produces less least-used data than a uniform

distribution. When the tensor size is small, the repeated data have more probability existing in

the center positions, which means there is less probability to be evicted. In other cases, memory

oversubscription performance is not influenced by data distribution. Additionally, Table 2 illus-

trates stable performances of three eviction policies with varying oversubscription rates. More

specifically, both GFLOPS and improvements are close in these three cases. It is concluded that

the oversubscription rate has a trivial impact on memory eviction performance. Table 3 explores

the influence of the repeated rate. On one hand, the performance improvement is relatively stable,

achieving about 1.2×. On the other hand, values of memory hits and GFLOPS increase as the re-

peated rate is higher. This is because more repeated data bring more reusability opportunities. The

Pre-Protected eviction policy yields stable benefits on eliminating redundant memory evictions

with varying oversubscription rate and repeated rate. In summary, evaluation results are consis-

tent with our theoretical analysis in Section 5.4. The Pre-Protected LRU eviction policy always

outperforms the LRU eviction policy in memory hits and GFLOPS. The Pre-Protected LRU evic-

tion policy is able to avoid data thrashing and obviously eliminate redundant memory evictions.

6.5 User Case: Evaluation in Redstar System

In order to evaluate in practical scenarios, this work measures three real physics correlation func-

tions in the Redstar system. As claimed in Section 2, calculating one correlation function includes

multiple configurations with multiple time intervals. In a typical practical scenario, one correlation

function produces about 400 to 500 configurations, and then one configuration executes through

64 time intervals. Each configuration obtains the identical computation and different data in all

time intervals. Different configurations also represent the same computations. Therefore, the per-

formance is measured by the average executing results of one configuration of the correlation func-

tions with a single time interval. All three of these correlation functions belong to multi-meson

system computations. Detailed information of correlation functions is shown in Table 4.

This work designs a set of experiments to integrate into the Redstar system. Execution time and

GFLOPS are measured to evaluate performance improvements. Table 5 illustrates the experiment

results. Execution time implies the average of 10 execution loops at a single time interval of one

configuration. GFLOPS are calculated based on all the memory operations and the execution time.

According to Table 5, the improved performance ranges from 3.56× to 6.12× in execution time and

3.56× to 6.08× in GFLOPS. These results support the significant benefits of MemHC on accelerating

hadron contractions in real-world applications.
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Table 4. Information of Real Correlation Functions

Function Name Tensor Size #Total Nodes Memory (GBytes) #Contractions

a1_rhopi 128 106 0.44 68

f0d2 256 2173 36.28 1,968

f0d4 256 2173 36.32 1,970

Basic information of three correlation functions including the tensor (spin) size, the number of initial and unique

hadron nodes, the theoretical needed memory, and the number of hadron contractions.

Table 5. Performance of Real Correlation Functions: Execution Time and GFLOPS on NVIDIA P100

Function Name
Execution Time (s) GFLOPS

Unified Memory MemHC Speedup Unified Memory MemHC Speedup

a1_rhopi 0.61 0.17 3.56× 59.87 212.87 3.56×
f0d2 16.19 2.67 6.06× 134.52 815.22 6.06×
f0d4 16.33 2.67 6.12× 133.44 810.72 6.08×

Speedup means the times of the accelerated performance of MemHC.

7 RELATED WORK

Tensor contraction optimization works. Prior works focus on implementing a general

method [2, 7, 22, 23, 29, 31, 33, 39, 42] to optimize an individual tensor contraction instead of a

number of tensors. Some other related works optimize tensor contraction kernel for specific ten-

sor patterns, such as sparsity [31], symmetry [22], and high rank [42]. Kim et al. [23] propose

a GPU code generator of tensor contractions to leverage data reuse in a high-dimensional loop.

Another work of Kim et al. [22] aims to optimize CCSD kernel computation for specific applica-

tions. Ma et al. [32] implement a code generator to translate tensor expressions to optimized CUDA

codes. Nelson et al. [36] present a machine-learning-based approach to find the optimal GPU codes

for tensor contraction. Different from all these efforts, MemHC targets a large number of tensor

contractions on efficient memory management and redundancy eliminations.

GPU memory management frameworks. GPU is famous for dramatically speeding up

the computation of various practical applications, including deep learning [46, 48, 50, 51] and

scientific computing. Many existing research efforts aim to optimize GPU memory management.

Li and Chapman [28] present a set of hybrid implicit or explicit data movement frameworks

to optimize GPU unified memory. Dashti and Fedorova [12] discuss various popular memory

management methods in heterogeneous systems including HSA, NVIDIA, and AMD hardware.

Ausavarungnirun et al. [4] propose Mosaic, a new GPU memory manager that efficiently supports

multiple page sizes. Compared with these works, MemHC mainly targets specific attributes,

multiple memory redundancies, in many-body correlation. Other prior works mainly explore

the memory oversubscription based on unified memory management. A framework ETC [27]

classifies applications as regular and irregular and provides three memory oversubscription

mitigation techniques. Kim et al. [21] also focus on dealing with memory oversubscription on

unified memory including Thread Oversubscription (TO) and Unobtrusive Eviction (UE). In

contrast, MemHC exploits a novel eviction policy, the Pre-Protected eviction, based on an explicit

and optimized GPU memory management for many-body correlation.

Memory redundancy elimination techniques. Existing work about memory redundancy elim-

ination techniques cannot address correlation function efficiently. For instance, many efforts about

accelerating neural networks [20, 37] eliminate redundant operations in registers. Other elimina-

tion redundancy works focus on GPU cache [3, 13, 16] and shared memory [8, 20]. Unlike these
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efforts, one hadron node requires about 37M memory cost in a single meson system with 384 ten-

sor size, which cannot be optimized in GPU register, cache, or shared memory. Unified Memory

management [26] jointly manages host and device memory and provides memory allocation elim-

ination techniques. However, as analyzed in Section 6, Unified Memory management produces

redundant CPU/GPU memory communications when passing references of GPU objects from the

host, which is a frequent operation in computing many-body correlation functions. Therefore,

Unified Memory management and other conventional redundancy elimination techniques are not

suitable for many-body correlation calculations.

Memory eviction policies. Currently many efforts aim to avoid evicting reusable data and lever-

age the memory hit rate. Popular eviction policies include Random Eviction, MRU, LRU, CAR,

Clock-Pro, and more complicated policies [5, 19, 25, 38]. Clock-Pro [19] considers not only the

recently referenced data but also recently evicted data, which is better than LRU in one-time scan

and large loop. CAR [5] is self-tuned and theoretically more efficient than LRU. These eviction

policies implement different techniques to reduce the redundant evictions but cannot avoid them

completely. Compared with these efforts, the pre-protected policy utilizes the specific data struc-

ture (vector form of hadron nodes) to predict data access in advance, which can help pre-protect

repeat data and avoid redundant memory evictions.

8 DISCUSSION

We discuss two future works about optimizing many-body correlation functions. On one hand,

we plan to scale up the current work to multiple GPUs. The challenges include high efficiency of

multi-GPU scheduling for many-body correlation calculations and memory operation reductions,

especially memory communication among GPUs. On the other hand, there exist complicated cor-

relation function systems, like tetra systems based on four-dimensional tensors. High-dimensional

tensors make contraction much more complex (e.g., tensor permutations), both in memory utiliza-

tion and in computation expense. In the future, we will extend the framework to address more

types of hadronic systems and further optimizations on high-rank tensor contractions.

9 CONCLUSION

In the article, we present an efficient GPU memory management framework MemHC to elimi-

nate broad memory redundancies. The redundant memory operations involve memory allocations,

CPU/GPU memory communications, and oversubscription. MemHC exploits associated reduction

optimizations including memory reusability optimizations, data reorganization, and on-demand

synchronization. Memory reusability optimizations include duplication-aware management and

overwriting lazy-released memory for duplicate data and new intermediate data. Additionally, this

work designs a novel Pre-Protected LRU eviction policy to avoid redundant memory evictions and

data thrashing. In evaluation, MemHC outperforms the unified memory management in general

correlation functions and three real-world physics correlation functions. The improvements are

able to achieve from 2.17× to 10.73× higher GFLOPS. MemHC is also widely evaluated in four ar-

chitectures, NVIDIA P100, NVIDIA V100, AMD MI50, and AMD MI100, to demonstrate the robust

portability and generalization. Furthermore, although this framework is built for many-body cor-

relation functions, some new insights, like the Pre-Protected LRU eviction, are potentially helpful

for other workloads. For instance, the neural network models (particularly DNN training tasks

that require a significant amount of GPU memory) have pre-defined data structures to reuse in-

termediate results and model weights when bypassing computational graphs. The Pre-Protected

LRU eviction method can help pre-protect the reusable intermediate data in advance to eliminate

redundant memory evictions for large datasets. Another example is large time-evolving graph
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processing that generates dynamic graph structures and provides data reuse opportunities for the

repeated part of the graphs. Many current efforts focus on predicting temporal graph behaviors,

which allows the Pre-Protected LRU eviction policy to pre-protect the reusable nodes and elimi-

nate redundant memory evictions. In the future, we will explore more optimizations for multiple

GPU scheduling and accelerating of complicated hadronic systems.
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