
1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

PPoPP 2023, February 25–March 1, 2023, Montreal, Canada

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

Supplementary Material
A iQAN Algorithm
Algorithm 2: iQAN : Intra-Query Parallel ANNS
Input: graph 𝐺 , starting point 𝑃 , query 𝑄 , queue capacity

𝐿, number of workers 𝑇
Output: 𝐾 nearest neighbors of 𝑄

1 expansion width𝑊 ← 1
2 global priority queue 𝑆 ← an empty queue
3 local priority queues 𝐿𝑆 ← 𝑇 empty queues
4 array𝑈 ← the vector to store update positions of workers
5 compute 𝑑𝑖𝑠𝑡 (𝑃,𝑄) and add 𝑃 into 𝑆
6 while true do
7 divide all unchecked vertices from 𝑆 into 𝐿𝑆
8 if all 𝐿𝑆 are empty then break
9 foreach worker 𝑡 out of𝑊 in parallel do
10 while 𝐿𝑆 [𝑡] has unchecked vertices and 𝑑𝑜𝑀𝑒𝑟𝑔𝑒 is

false do
11 𝑣 ← the first unchecked vertex in 𝐿𝑆 [𝑡]
12 mark 𝑣 as checked
13 foreach neighbor 𝑢 of 𝑣 in 𝐺 do
14 if 𝑢 is not visited then
15 mark 𝑢 as visited
16 compute 𝑑𝑖𝑠𝑡 (𝑢,𝑄)
17 add 𝑢 into 𝐿𝑆 [𝑡]

18 if 𝐿𝑆 [𝑡].size() > 𝐿 then 𝐿𝑆 [𝑡].resize(𝐿)
19 update𝑈 [𝑡]
20 if 𝑡 is the checker then
21 𝑢 ← average positions of elements in𝑈
22 if 𝑢 ≥ 𝐿 · 𝑅 then 𝑑𝑜𝑀𝑒𝑟𝑔𝑒 ← true

23 else 𝑑𝑜𝑀𝑒𝑟𝑔𝑒 ← false

24 assign the next checker in a round-robin
way

25 merge 𝐿𝑆 into 𝑆
26 if 𝑆 .size() > 𝐿 then 𝑆 .resize(𝐿)
27 if𝑊 < 𝑇 then𝑊 ← 2𝑊

28 return the first 𝐾 vertices in 𝑆

Algorithm 2 describes the overall algorithm of iQAN . At
the beginning of each global step, the global queue evenly
divides its unchecked candidates among all workers. After
that, each worker performs a local best-first search based on
its own local queue (Line 10 to Line 24). In a local search step,
a worker expands its best-unchecked candidate and updates
its private queue accordingly. A worker continues expansion
until the checker indicates a sync or it has no unchecked
candidates left locally. In the path-wise parallelism, the visit-
ing map is shared by all workers to indicate if a vertex has
been visited. Since multiple threads may access the shared
visiting map concurrently, locking or lock-free algorithms
are required to ensure a vertex is visited only once. Fortu-
nately, the ANNS algorithm remains correct even if a vertex
is calculated multiple times because the local candidates are

guaranteed to be merged back to the global priority queue.
Therefore, multiple threads do not need to exclusively update
the visiting map, which is then called a loosely synchronized
visiting map and can reduce communication overhead. It is
implemented using a bit vector instead of a byte array for
faster access.

B Details of Datasets
Table 2. Characterization of datasets. Dim. denotes the
dimension of a feature vector, #base denotes the number of
points, and #queries denotes the number of queries.

Dataset Dim. #base #queries
SIFT1M 128 1M 10K
GIST1M 960 1M 1K
DEEP10M 96 10M 10K
SIFT100M 128 100M 10K
DEEP100M 96 100M 10K
BIGANN 128 1B 10K
DEEP1B 96 1B 10K

Table 2 summarizes the details of the datasets we use in
the evaluation.

C Latency Speedups on Skylake

1 2 4 8 161

2

4

8 GIST1M

R=0.99
R=0.995
R=0.999

1 2 4 8 161

2

4

8
SIFT100M

R=0.99
R=0.995
R=0.999

1 2 4 8 161

2

4

8 DEEP100M

R=0.99
R=0.995
R=0.999

Number of threads

Sp
ee

du
p 

ov
er

 1
 th

re
ad

Figure 18. Speedups of iQAN over the sequential baseline
on Skylake.
Figure 18 shows that iQAN on Skylake achieves average

4.4× and 5.2× speedups over the sequential baseline with 8-
and 16-thread at recall 0.999, respectively.

D Comparison with a GPU
Implementation.

Table 3. Latency comparison of iQAN and Faiss-GPU on
five datasets. Lt. means Latency. OOM means out of memory.
Faiss-GPU’s index format is IVFFLat. iQAN uses 32 threads.

Datasets Faiss-GPU w/ IVFFlat iQAN -32T on KNL
R@100 Lt. (ms.) R@100 Lt. (ms.)

SIFT1M 0.52 0.87 0.91 0.61
GIST1M 0.36 7.25 0.90 1.21
DEEP10M 0.62 5.79 0.90 0.96
SIFT100M OOM OOM 0.90 2.00
DEEP100M OOM OOM 0.90 1.91

We also compare iQAN with a GPU-based large-scale
ANNS algorithm [30] in the Faiss library [1]. The GPU exper-
iments are conducted on an NVIDIA Tesla P100 with CUDA
10.2. Faiss is set to have one query in every batch because we
focus on reducing the online query latency to meet stringent
latency requirements. Table 3 shows the latency comparison
results on five datasets. iQAN uses 32 threads on KNL. For

14



1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

iQAN PPoPP 2023, February 25–March 1, 2023, Montreal, Canada

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

the SIFT100M and DEEP100M, Faiss-GPU complains of out-
of-memory errors. For other datasets, iQAN outperforms
Faiss-GPU with 1.4× to 6.0× speedup and much better re-
call, which indicates that iQAN can effectively achieve faster
latency on CPUs than GPU-based algorithms.

E Effects on memory bandwidth.

0.90 0.95 1.000

10

20

30

Recall@100M
em

. B
an

dw
id

th
 (G

B/
s)

iQAN
PathWise Exhaust

NoSync

NoStaged

EdgeWise

Figure 19.Memory bandwidth on KNL using 32 threads.
Figure 19 shows that iQAN achieves a much higher mem-

ory bandwidth utilization than EdgeWise. For example, the
memory bandwidth increases from 1.6 GB/s to 21.1 GB/s
at recall 0.999. This bandwidth improvement comes from
iQAN ’s design to expose more parallelism during neigh-
bor expansion while carefully eliminating synchronization

overhead and redundant computations. To see how each
optimization affects the memory bandwidth utilization, we
also include the results of intermediate configurations. Path-
Wise overall achieves better memory bandwidth utilization
than EdgeWise. This is because it exposes more parallelism
during the neighbor expansion process. However, as the re-
call target increases, the memory bandwidth of Pathwise
declines gradually towards EdgeWise. This is because Path-
Wise does not apply redundancy-aware synchronization and
still merges local candidates to the global priority queue in
every iteration. As a result, the synchronization overhead
becomes a dominant factor and limits the memory band-
width utilization when the search is under the high recall
region. NoStaged, NoSync, Exhaust, and iQAN all improve the
memory bandwidth utilization considerably because they
all reduce frequent synchronizations. NoStaged and NoSync
have slightly higher memory bandwidth utilization than
iQAN because NoStaged and NoSync either use the maxi-
mum expansion width during the entire search process or
perform no synchronization across worker threads, which
leads to more (redundant) data loads during neighbor expan-
sion. Therefore, iQAN results in shorter query latency than
NoStaged and NoSync even though it requires slightly less
memory bandwidth utilization.

15


