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Supplementary Material
A iQAN Algorithm
Algorithm 2: iQAN : Intra-Query Parallel ANNS
Input: graph 𝐺 , starting point 𝑃 , query 𝑄 , queue capacity

𝐿, number of workers 𝑇
Output: 𝐾 nearest neighbors of 𝑄

1 expansion width𝑊 ← 1
2 global priority queue 𝑆 ← an empty queue
3 local priority queues 𝐿𝑆 ← 𝑇 empty queues
4 array𝑈 ← the vector to store update positions of workers
5 compute 𝑑𝑖𝑠𝑡 (𝑃,𝑄) and add 𝑃 into 𝑆
6 while true do
7 divide all unchecked vertices from 𝑆 into 𝐿𝑆
8 if all 𝐿𝑆 are empty then break
9 foreach worker 𝑡 out of𝑊 in parallel do
10 while 𝐿𝑆 [𝑡] has unchecked vertices and 𝑑𝑜𝑀𝑒𝑟𝑔𝑒 is

false do
11 𝑣 ← the first unchecked vertex in 𝐿𝑆 [𝑡]
12 mark 𝑣 as checked
13 foreach neighbor 𝑢 of 𝑣 in 𝐺 do
14 if 𝑢 is not visited then
15 mark 𝑢 as visited
16 compute 𝑑𝑖𝑠𝑡 (𝑢,𝑄)
17 add 𝑢 into 𝐿𝑆 [𝑡]

18 if 𝐿𝑆 [𝑡].size() > 𝐿 then 𝐿𝑆 [𝑡].resize(𝐿)
19 update𝑈 [𝑡]
20 if 𝑡 is the checker then
21 𝑢 ← average positions of elements in𝑈
22 if 𝑢 ≥ 𝐿 · 𝑅 then 𝑑𝑜𝑀𝑒𝑟𝑔𝑒 ← true

23 else 𝑑𝑜𝑀𝑒𝑟𝑔𝑒 ← false

24 assign the next checker in a round-robin
way

25 merge 𝐿𝑆 into 𝑆
26 if 𝑆 .size() > 𝐿 then 𝑆 .resize(𝐿)
27 if𝑊 < 𝑇 then𝑊 ← 2𝑊

28 return the first 𝐾 vertices in 𝑆

Algorithm 2 describes the overall algorithm of iQAN . At
the beginning of each global step, the global queue evenly
divides its unchecked candidates among all workers. After
that, each worker performs a local best-first search based on
its own local queue (Line 10 to Line 24). In a local search step,
a worker expands its best-unchecked candidate and updates
its private queue accordingly. A worker continues expansion
until the checker indicates a sync or it has no unchecked
candidates left locally. In the path-wise parallelism, the visit-
ing map is shared by all workers to indicate if a vertex has
been visited. Since multiple threads may access the shared
visiting map concurrently, locking or lock-free algorithms
are required to ensure a vertex is visited only once. Fortu-
nately, the ANNS algorithm remains correct even if a vertex
is calculated multiple times because the local candidates are

guaranteed to be merged back to the global priority queue.
Therefore, multiple threads do not need to exclusively update
the visiting map, which is then called a loosely synchronized
visiting map and can reduce communication overhead. It is
implemented using a bit vector instead of a byte array for
faster access.

B Details of Datasets
Table 2. Characterization of datasets. Dim. denotes the
dimension of a feature vector, #base denotes the number of
points, and #queries denotes the number of queries.

Dataset Dim. #base #queries
SIFT1M 128 1M 10K
GIST1M 960 1M 1K
DEEP10M 96 10M 10K
SIFT100M 128 100M 10K
DEEP100M 96 100M 10K
BIGANN 128 1B 10K
DEEP1B 96 1B 10K

Table 2 summarizes the details of the datasets we use in
the evaluation.
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Figure 18. Speedups of iQAN over the sequential baseline
on Skylake.
Figure 18 shows that iQAN on Skylake achieves average

4.4× and 5.2× speedups over the sequential baseline with 8-
and 16-thread at recall 0.999, respectively.

D Comparison with a GPU
Implementation.

Table 3. Latency comparison of iQAN and Faiss-GPU on
five datasets. Lt. means Latency. OOM means out of memory.
Faiss-GPU’s index format is IVFFLat. iQAN uses 32 threads.

Datasets Faiss-GPU w/ IVFFlat iQAN -32T on KNL
R@100 Lt. (ms.) R@100 Lt. (ms.)

SIFT1M 0.52 0.87 0.91 0.61
GIST1M 0.36 7.25 0.90 1.21
DEEP10M 0.62 5.79 0.90 0.96
SIFT100M OOM OOM 0.90 2.00
DEEP100M OOM OOM 0.90 1.91

We also compare iQAN with a GPU-based large-scale
ANNS algorithm [30] in the Faiss library [1]. The GPU exper-
iments are conducted on an NVIDIA Tesla P100 with CUDA
10.2. Faiss is set to have one query in every batch because we
focus on reducing the online query latency to meet stringent
latency requirements. Table 3 shows the latency comparison
results on five datasets. iQAN uses 32 threads on KNL. For
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the SIFT100M and DEEP100M, Faiss-GPU complains of out-
of-memory errors. For other datasets, iQAN outperforms
Faiss-GPU with 1.4× to 6.0× speedup and much better re-
call, which indicates that iQAN can effectively achieve faster
latency on CPUs than GPU-based algorithms.

E Effects on memory bandwidth.
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Figure 19.Memory bandwidth on KNL using 32 threads.
Figure 19 shows that iQAN achieves a much higher mem-

ory bandwidth utilization than EdgeWise. For example, the
memory bandwidth increases from 1.6 GB/s to 21.1 GB/s
at recall 0.999. This bandwidth improvement comes from
iQAN ’s design to expose more parallelism during neigh-
bor expansion while carefully eliminating synchronization

overhead and redundant computations. To see how each
optimization affects the memory bandwidth utilization, we
also include the results of intermediate configurations. Path-
Wise overall achieves better memory bandwidth utilization
than EdgeWise. This is because it exposes more parallelism
during the neighbor expansion process. However, as the re-
call target increases, the memory bandwidth of Pathwise
declines gradually towards EdgeWise. This is because Path-
Wise does not apply redundancy-aware synchronization and
still merges local candidates to the global priority queue in
every iteration. As a result, the synchronization overhead
becomes a dominant factor and limits the memory band-
width utilization when the search is under the high recall
region. NoStaged, NoSync, Exhaust, and iQAN all improve the
memory bandwidth utilization considerably because they
all reduce frequent synchronizations. NoStaged and NoSync
have slightly higher memory bandwidth utilization than
iQAN because NoStaged and NoSync either use the maxi-
mum expansion width during the entire search process or
perform no synchronization across worker threads, which
leads to more (redundant) data loads during neighbor expan-
sion. Therefore, iQAN results in shorter query latency than
NoStaged and NoSync even though it requires slightly less
memory bandwidth utilization.
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