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Abstract
Vector search has drawn a rapid increase of interest in the
research community due to its application in novel AI appli-
cations. Maximizing its performance is essential for many
tasks but remains preliminary understood. In this work, we
investigate the root causes of the scalability bottleneck of
using intra-query parallelism to speedup the state-of-the-art
graph-based vector search systems on multi-core architec-
tures. Our in-depth analysis reveals several scalability chal-
lenges from both system and algorithm perspectives. Based
on the insights, we propose iQAN , a parallel search algorithm
with a set of optimizations that boost convergence, avoid
redundant computations, and mitigate synchronization over-
head. Our evaluation results on a wide range of real-world
datasets show that iQAN achieves up to 37.7× and 76.6×
lower latency than state-of-the-art sequential baselines on
datasets ranging from a million to a hundred million datasets.
We also show that iQAN achieves outstanding scalability as
the graph size or the accuracy target increases, allowing it to
outperform the state-of-the-art baseline on two billion-scale
datasets by up to 16.0× with up to 64 cores.

CCSConcepts: • Information systems→Nearest-neighbor
search; Searching with auxiliary databases.

Keywords: approximate nearest neighbor search, graph-based,
vector search, intra-query parallelism
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1 Introduction
Nearest neighbor search (NNS) recently gained popularity
due to its core role in building semantic-based search sys-
tems for unstructured data such as images, texts, and video
using neural embedding models. In semantic-based vector
search, 𝑁 unstructured data are encoded into embedding
vectors via neural networks in high dimensional space R𝑑 ,
where 𝑑 often ranges from 100 to 1000 and 𝑁 ranges from
millions to billions. The search finds the 𝐾 nearest embed-
dings for a given query based on the distance metric be-
tween vectors. Semantic-based search enables novel applica-
tions and has been adopted in many real-world applications.
For example, major e-commerce players (e.g., Amazon [46])
build semantic search engines that embed both product
catalog and the search query and then recommend prod-
ucts whose embeddings are closest to the embedded search
query; Youtube [12] embeds videos to vectors for video rec-
ommendation; Web-scale search engines embed text (e.g.,
word2vec [43], doc2vec [32]) and images (e.g., VGG [54]) for
text/image retrieval [11, 56], and many more.
Since the search often occurs on online interactive appli-

cations for every query, significant challenges have been
raised to reduce the latency of NNS. Numerous efforts aim
to reduce the search latency while achieving high accuracy
by designing various approximate nearest neighbor search
(ANNS) algorithms, including hashing-based methods[2, 3,
13, 25], quantization-based methods [21, 27, 66, 67], tree-
based methods [10, 53, 64], and graph-based methods [19,
37, 68]. Among them, the similarity graph-based algorithms
have emerged as a remarkably effective class of methods for
high-dimensional ANNS, outperforming other approaches
on a wide range of datasets to achieve the best accuracy-
vs-latency [4, 19, 38]. These graph-based methods have also
been integratedwithmany large-scale production systems [11,
19, 38], where optimizations for fast search and high accuracy
have a clear, practical impact because production systems
have stringent latency and high accuracy requirements: de-
layed or inaccurate responses directly hurt user satisfaction
and affect revenue [17].
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Despite their promising results, graph-based methods still
have challenges that limit their use in real-world scenar-
ios. In particular, as the data size grows, achieving both low
latency and high accuracy simultaneously becomes increas-
ingly challenging. Current solutions often resort to inter-
query parallelism by dispatching queries across multiple
processors or nodes to be processed simultaneously [9, 19].
This approach scales from a throughput perspective but does
not help reduce query latency because each query still needs
to perform the same amount of vector computations to find
the nearest neighbors. Another natural idea to reduce latency
is to exploit intra-query parallelism on individual nodes with
multi-core processors. For example, one may parallelize the
node expansion in each iteration step of the sequential search
algorithm, hoping that multiple worker threads can check
the closeness of multiple neighbors in parallel while perform-
ing the same computations on each step as the sequential
algorithm. Surprisingly, this solution performs quite poorly
andmay even performmuchworse than awell-tuned sequen-
tial algorithm. To date, however, few studies have examined
why intra-query parallel search has difficulties in achieving
speedups for graph-based ANNS on multi-core architectures.

In this paper, we exploit intra-query parallelism for graph-
based ANNS and ask the questions: how to achieve low
search latency and high accuracy for graph-based ANNS
algorithms on multi-core architectures? Especially, the algo-
rithm should have a clear advantage over the state-of-the-art
ANNS implementations. We start by presenting several stud-
ies that reveal the root causes of the poor scalability from
directly parallelizing the existing sequential graph traversal
strategy. Based on our studies, we present iQAN , a parallel
graph search algorithm that offers both low latency and high
accuracy simultaneously while carrying excellent scalability
as the graph size or accuracy target increases. iQAN intro-
duces a new parallelism scheme called path-wise parallelism
that allows reducing the iteration depths significantly. This
optimization avoids long sequential dependencies during the
search, but it raises a challenge to the search efficiency: it
introduces a considerable amount of redundant computa-
tions, leading to wasted compute and memory bandwidth
consumption. To mitigate redundant computations, iQAN
introduces a staged expansion scheme that only performs
path-wise parallelism at where they are most effective when
searching. Finally, the scalability of parallel graph search
is limited by the frequent global synchronizations needed
for greedy routing. To reduce the synchronization overhead,
iQAN introduces a redundancy-aware synchronization strat-
egy that allows multiple worker threads to perform searches
concurrently while avoiding redundant computations and a
large number of synchronizations, without losing accuracy.
In summary, this paper makes the following contributions:
• Performing in-depth studies to reveal the root causes of
the poor scalability of state-of-the-art vector search algo-
rithms on multi-core architectures (Section 4).

• Introducing intra-query parallelism optimizations, i.e.,
path-wise parallelism, staged expansion, and redundancy-
aware synchronization to accelerate the search (Section 5).
• Evaluating iQAN and showing order of magnitude latency
improvement against state-of-the-art solutions (Section 6).

We implement iQAN in C++ on Linux Our evaluations results
on a wide range of datasets show that iQAN achieves up to
37.7× and 76.6× lower latency than state-of-the-art solutions
(NSG [19], HNSW [38]) for a wide range of accuracy targets
and datasets ranging from a million to a hundred million
data points, from ∼100 dimensions to ∼1000 dimensions
embedding vectors, on different multi-core architectures. We
also observe that iQAN achieves outstanding scalability as
the graph size or the accuracy target increases, allowing it
to outperform the state-of-the-art solution on two billion-
scale datasets by up to 16.0× with up to 64 cores. Finally, we
present a performance breakdown and thorough analysis to
study the performance impact of its key optimizations and
comparison with alternative methods.

2 Background and Related Work
2.1 ANN Search Optimizations
The literature on nearest neighbor search is vast, and hence,
we focus our attention on the most relevant works here.
There has been a lot of work on building effective ANN in-
dices to accelerate the search process. Earlier works focus on
space partitioning-based methods. For example, Tree-based
methods (e.g., KD-tree [53] and R* tree [10]) hierarchically
split the data space into lots of regions that correspond to the
leaves of a tree structure and only search a limited number of
promising regions. However, the complexity of these meth-
ods becomes no more efficient than brute-force search as the
dimension becomes large (e.g., >16) [33]. Prior works also
have spent extensive efforts on locality-sensitive hashing-
based methods [2, 3, 13, 25], which map data points into
multiple buckets with a certain hash function such that the
collision probability of nearby points is higher than the prob-
ability of others. These methods have solid theoretical foun-
dations. LSH and its variations are often designed for large
sparse vectors with hundreds of thousands of dimensions.
In practice, LSH-based methods have been outperformed by
other methods, such as graph-based approaches, by a large
margin on large-scale datasets [4, 19, 38].
More recently, Malkov and Yashunin found graphs that

satisfy the small-world property exhibit excellent navigabil-
ity in finding nearest neighbors. They introduce the Hier-
archical Navigable Small World (HNSW) [38], which builds
a hierarchical k-NN graph with additional long-range links
that help create the small-world property. For each query,
it then performs a walk, which eventually converges to the
nearest neighbor in logarithmic complexity. Subsequently,
Fu et al. proposed NSG, which approximates Monotonic
Relative Neighbor Graph (MRNG) [19] that also involves
long-ranged links for enhancing connectivity. Both HNSW
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and NSG have been proved to outperform prior methods
by checking much fewer data points to achieve the same
recall [4, 6, 16, 19, 28, 34, 64, 66].
2.2 Parallel Graph Processing
Parallel graph algorithms. There are numerous efforts
that aim to parallelize generic search schemes on graphs
(e.g., BFS [52], DFS [44], random walk [58], beam search [41],
and bucketing [55, 72]). However, many of these algorithms
were designed without considering having a vector associ-
ated with each vertex and a target of achieving high recall
under a stringent latency constraint. In contrast, we analyze
the search efficiency challenges of ANN and propose opti-
mizations to handle them to allow vector-based similarity
search to scale on modern multi-core architectures. Among
different algorithms, the most related work to ours is per-
haps Δ-stepping [72], which stages the expansion of nodes
in order to avoid redundant expansions. We have applied
Δ-stepping to vector search and will provide a more detailed
discussion in Section 5.5 and comparison in Section 6.
Parallel graph frameworks. There has been many graph
engines and frameworks developed in the past decade. Some
of them are shared-memory, focusing on processing in-mem-
ory datasets within a computation node [47, 60], e.g., Ga-
lois [45], Ligra [52], Polymer [71], GraphGrind [57], GraphIt
[72], Graptor [62], and GraphBLAS [5]. Some are distributed
systems [49], e.g., Pregel [36], GraphLab [35], PowerGraph
[22], and Gluon [14]. Some efforts focus on out-of-core de-
signs (e.g., GraphChi [31] and X-Stream [50]) and process
large graphs with disk support. Many graph frameworks are
also on GPUs [42, 63], such as CuSha [30], Gunrock [65],
GraphReduce [51], Graphie [23], Multigraph [24], Graph-
BLAST [69], and Ascetic [59]. These graph systems are either
based on a vertex-centric model [36, 70] or its variants (e.g.,
edge-centric [50]). Many of these parallel graph frameworks
are designed primarily for generic parallel graph analytics
instead of vector-based similarity search. Enabling ANN
search in these frameworks, which have matured compil-
ers and optimization technologies, is possible but requires
addressing non-trivial portability challenges. First, vector-
based similarity search uses special data formats for the
index (e.g., hierarchical graphs or hybrid KD-tree plus graph
structuresl [39]), which is not supported by existing graph
frameworks. Second, vector-based similarity search requires
well-designed parallelism and synchronization mechanisms
(even targeted for heterogeneous memory [26, 48]), while the
general optimization provided by existing graph frameworks
(e.g., delta-stepping) cannot provide enough performance
benefits. Therefore, porting those changes, to existing frame-
works, beyond the search algorithm itself, requires changes
across the entire system stack.
3 Preliminaries
Similarity graph. A similarity graph is a directed graph
𝐺 = (𝑉 , 𝐸), where each vertex 𝑣𝑖 ∈ 𝑉 corresponds to one of

Algorithm 1: Best-First Search (BFiS)
Input: graph𝐺 , starting point 𝑃 , query 𝑄 , queue capacity 𝐿
Output: 𝐾 nearest neighbors of 𝑄

1 priority queue 𝑆 ← ∅ /* sorted based on distance */

2 index 𝑖 ← 0
3 compute 𝑑𝑖𝑠𝑡 (𝑃,𝑄)
4 add 𝑃 into 𝑆
5 while 𝑆 has unchecked vertices do /* stop condition */
6 𝑖 ← the index of the 1st unchecked vertex in 𝑆
7 mark 𝑣𝑖 as checked
8 foreach neighbor 𝑢 of 𝑣𝑖 in 𝐺 do
9 if 𝑢 is not visited then
10 mark 𝑢 as visited
11 compute 𝑑𝑖𝑠𝑡 (𝑢,𝑄)
12 add 𝑢 into 𝑆 /* 𝑢 is unchecked */

13 if 𝑆 .size() > 𝐿 then 𝑆 .resize(𝐿)
14 return the first 𝐾 vertices in 𝑆

the vectors 𝑣𝑖 in a set of 𝑁 𝑑-dimensional embedding vectors
𝑣 = {𝑣1, ..., 𝑣𝑁 }. In practice, embedding vectors are generated
by entities in a problem domain (e.g., a video or image in a
recommendation system), which carry semantic meanings.
The vertices 𝑣𝑖 and 𝑣 𝑗 are connected by an edge if 𝑣 𝑗 belongs
to the set of𝑀 relative nearest neighbors of 𝑣𝑖 , determined by
the similarity graph construction algorithm (e.g., NSG [19]).
There are no self-edge or duplicate edges in the graph.
Top-K search. The search in a similarity graph is performed
via the Best-First Search (BFiS) [19], which aims to search
only a small subset of the graph nodes to find the top-K
nearest neighbors based on their closeness (e.g., Euclidean
distance) to the query. BFiS starts at a chosen (e.g., medoid
or random) point of the graph and greedily traverses the
graph’s edges by getting closer to the nearest neighbors at
each step until it converges to a local optimum (i.e., found
top-K near neighbors). Algorithm 1 shows its basic idea. The
search algorithm maintains a priority queue of size 𝐿 with
graph nodes (𝐿 ≥ 𝐾 ), indicating which neighbors should be
visited by the search process. In the beginning, all nodes are
initially in an unchecked state. During graph traversal, the
algorithm first selects the closest unchecked node 𝑣𝑖 from
the queue, called an active node (Line 6), and performs a
node expansion. A node expansion computes the pair-wise
distance of all neighbors of 𝑣𝑖 to the query (Line 8-12). Af-
ter the node expansion, the search inserts promising neigh-
bors into the priority queue as new unchecked candidates
for future expansion. The candidates in the priority queue
are sorted according to their distance to the query, so less
promising candidates will be popped out as new ones are
added (Line 13). The search iteratively expands unchecked
nodes based on their closeness (e.g., Euclidean distance) to
the query. The search converges when the priority queue
has at least 𝐾 candidates and there are no unchecked nodes
in it, indicating that it has reached a local optimum.
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Metric. In practice, finding the exact top-𝐾 can be very
time-consuming. As a result, the search process only ex-
amines a subset of vectors in the similarity graph, leading
to an accuracy-vs-latency trade-off. The accuracy is often
measured by the recall, which is the fraction of true nearest
neighbors (𝑅) in retrieved top-K candidates (𝑅′), defined as
follows [18]:

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅′) = |𝑅
′ ∩ 𝑅 |
|𝑅′ | =

|𝑅′ ∩ 𝑅 |
𝐾

(1)
A high recall is desired as low accurate results degrade user
satisfaction. On the other hand, the latency measures the
time spent to find the top-𝐾 nearest neighbors. Low latency
is crucial, especially to enable ANN search for online inter-
active applications.

Given the preliminaries, we now define the exact problem
we are tackling in this paper:
Problem definition. Considering a similarity graph and a
multi-core architecture with 𝑃 processors, our goal is to de-
sign a parallel search algorithm such that the search latency
to reach a given recall target is minimized.

4 Challenges in Graph-based ANN Search
We first discuss a straightforward parallelism implementa-
tion and analyze its cost on multi-core CPUs. The analysis
later guides the design in the design section.
Edge-wise parallelism (EP). Given that the pair-wise dis-
tance computations (Line 8-12 in Algorithm 1) have no depen-
dency on each other within an iteration, it is a natural idea to
parallelize the neighbor expansion step by splitting the dis-
tance computation across multiple threads. We denote this
scheme as edge-wise parallelism. Edge-wise parallelism al-
lows neighbor expansion to run in parallel while performing
the same computations on each neighbor as the sequential
algorithm. Another benefit of edge-wise parallelism is that it
returns the same result on each execution regardless of how
many threads are used. Despite its benefits in simplicity, this
natural idea cannot lead to good speedups. In fact, due to
the well-tuned sequential baseline, the edge-wise parallelism
often achieves sub-optimal performance. Fig. 1 shows that
to reach the recall target of 0.999 on DEEP100M dataset (the
detailed setup can be found in Section 6), the multi-threading
search with edge-wise parallelism performs poorly, i.e., no
speedups from 1 to up to 64 threads. What causes the poor
scalability of graph-based search on multi-core architecture?
Cause 1: Edge-wise parallelism leads to a high syn-
chronization cost. One major challenge in scaling edge-
wise parallelism is that a large number of node expansions
need to be performed to achieve high accuracy on large
graphs, resulting in hundreds or sometimes even thousands
of expansion rounds. Since each round requires at least one
global synchronization to maintain the order of all candi-
dates according to their distances to the queue point, this
frequent global synchronization adds significant synchro-
nization overhead to the search process. Fig. 2 shows that

as we increase the number of threads, the synchronization
overhead accounts for more than 50% of the total search time,
becoming a dominating factor in the overall search latency.
In principle, it is possible to mitigate this synchronization
overhead by adopting a concurrent priority queue or lock-
free algorithms during insertions. However, we found that
there are additional challenges that severely limit the parallel
search speed, as described below.
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Figure 1. EP’s latency on
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Cause 2: Edge-wise parallelism leads to low compu-
tational intensity, making the search process hard to
fully utilize memory bandwidth. We use Intel Processor
Counter Monitor [15] to measure the memory bandwidth
utilization under various datasets and graphs. The data move-
ment mostly comes from loading vectors during node expan-
sion. Table 1 shows that execution with a single thread use
only less than 3.4% of the peak hardware memory bandwidth
consumption (∼80 GB/s) on an Intel Xeon Phi processor, in-
dicating that utilizing more bandwidth with multi-threading
should lead to higher performance. However, with 32-way
edge-wise parallelism, the memory bandwidth utilization
only modestly increases to up to 4.2%. Some of the execu-
tions (e.g., SIFT1M) even observe decreased bandwidth con-
sumption, implying that the edge-wise parallelism has a low
computational intensity that makes it challenging to use all
of the raw bandwidth available. The reason that edge-wise
parallelism has low compute intensity lies in two aspects: (1)
unlike matrix multiplication, the point-wise Euclidean dis-
tance computation is an operator with low compute intensity,
and (2) the number of neighbors to be expanded in one step
is limited, given that similarity graphs naturally have low
out-degree to avoid the out-degree explosion problem [19].

Table 1. Memory bandwidth (GB/s) measurement.
Benchmarks SIFT1M GIST1M DEEP10M SIFT100M DEEP100M
single thd. 2.1 2.7 1.6 1.2 0.8

edge-wise 64 thds. 2.0 3.4 2.0 2.7 1.6

Cause 3: Edge-wise parallelism still requires many iter-
ations to converge, resulting in long sequential depen-
dencies between steps. In Algorithm 1, the search performs
a series of sequential iterations (Line 5-13), where each it-
eration performs a node expansion. Which node to expand
depends on the priority queue updated by the previous steps.
Moreover, the number of iterations depends on the recall tar-
get and the graph size. For example, Fig. 3 shows that as the
recall target increases, the number of iterations to find the
top-100 nearest neighbors on a hundred million scale dataset
DEEP100M grows dramatically as the recall target becomes
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higher (e.g., a 34.6-time increase from 0.9 to 0.999 recall).
Fig. 4 shows that as the dataset size increases, the number
of iterations to find the results for recall target 0.999 also
grows (e.g., 7.3 times from 1M-vector dataset to 100M-vector
dataset). This long sequential dependency makes achieving
low latency with high accuracy especially challenging.
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5 Design of iQAN
To address the aforementioned challenges, we introduce
iQAN , a parallel search algorithm to accelerate graph-based
ANNS on multi-core architectures.
5.1 Reduce Iteration Depth by Path-Wise Parallelism
In each search iteration, BFiS performs node expansion to
the most promising unchecked candidate. In iQAN , we make
a small modification to this process by relaxing the prior-
ity order and letting each thread expand a few more nodes
(e.g., top𝑊 unchecked candidates) in every step as active
nodes for expansion. We also relax the synchronization such
that a global synchronization is only performed after a few
expansion steps. We call this new way of expanding nodes
path-wise parallelism (PP). This small change in algorithm re-
sults in a significant reduction in iteration depths for queries,
e.g., from a few thousands to tens in some cases.
Why would this change reduce the iteration depth? The

multi-node expansion and relaxed synchronizations are equiv-
alent to letting each thread explore paths in a local region
instead of a single node’s neighbor list before doing a global
synchronization. By doing so, it increases the likelihood
of finding nearest neighbors in less number of iterations.
Conceptually, this can be illustrated in Fig. 5a. It shows the
search path of BFiS expands only one node in every search
step marked as dashed arrows. After the 1st step, 𝐻 is the
active node. However, it cannot lead to a closer candidate, so
it backtracks to the unchecked candidate 𝐹 . The same kind of
backtracking happens from 𝑁 to𝐺 and𝑂 to 𝐸. Consequently,
BFiS has a long search path to find all nearest neighbors. In
contrast, Fig. 5b shows an example that by letting a thread
expand top-3 promising candidates (e.g.,𝑊 = 3), after the 1st
step, 𝐻 and 𝐹 are both active nodes; thus, the search paths
to nearest neighbors start immediately without waiting for
its turn as in BFiS. As a result, while BFiS has an iteration
depth of 11, the path-wise parallelism only has 5.
We have conducted experimental studies to verify the

effectiveness of this change. Fig. 6 shows the comparison
results of iteration depths between BFiS and PP on dataset
SIFT1M using 10K queries with a 0.90 recall target. We set
𝑊 to 64. Overall, while BFiS takes 10.1, 69.4, and 88.1 steps
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Figure 5. BFiS (11 steps) vs. path-wise parallelism (5 steps).
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Figure 6. Path-wise parallelism converges to local optimum
with a much smaller iteration steps than BFiS.
to find the top-1, top-50, and top-100 near neighbor, PP only
takes 3.4, 5.0, and 5.4 steps on average, respectively, a sig-
nificant reduction. From the unchecked node’s perspective,
Fig. 6b shows that PP also takesmuch fewer steps to converge
to a local optimum (i.e., finish examining all the unchecked
vertices) than BFiS.

We remark that the BFiS expansion process is similar to
the tree expansion in the classical DFS/BFS. BFiS naturally
introduces an expansion tree: the root node 𝑇𝑟 of the tree is
the starting vertex 𝑃 in graph 𝐺 ; the children of a tree node
𝑄𝑖 (corresponding to a graph vertex 𝑣𝑖 ) are the unvisited
neighbors of 𝑣𝑖 . The expansion of BFiS bears many similari-
ties to DFS, as each time, it will expand only one leaf node.
Our path-wise parallelism is inspired by parallel expansion
for DFS/BFS. However, different from DFS, which expands
the one with the most depth, PP expands the𝑊 leaves si-
multaneously of the tree, which are𝑊 nearest neighbors
of query 𝑄 among all the leaves of the current expansion
tree. Thus, PP can potentially reduce the total number of
iteration depths of BFiS by a factor of𝑊 times. As for𝑇 steps,
PP can expand 𝑇 ×𝑊 graph nodes. We also note that the
edge-wise parallelism becomes a special case of PP where
𝑊 = 1 and 𝑇 = 1, and both parallelization are the under
Bulk Synchronous Parallel (BSP) model [61] though BFiS has
rather limited parallelism to explore.

We also remark that in the path-wise parallelism, the vis-
iting map is shared by all workers to indicate if a vertex has
been visited. Since multiple threads may access the shared
visiting map concurrently, locking or lock-free algorithms
are required to ensure a vertex is visited only once. Fortu-
nately, the ANNS algorithm remains correct even if a vertex
is calculated multiple times because the local candidates are
guaranteed to be merged back to the global priority queue.
Therefore, multiple threads do not need to exclusively up-
date the visiting map and a loosely synchronized visiting map



PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren

0.90 0.95 1.000.0

5.0×107

1.0×108

1.5×108

Recall@100

D
is

ta
nc

e 
C

om
pt

.

Edge-wise parallelism
Path-wise parallelism

Figure 7. Aggregated dis-
tance computations of BFiS
w/ EP and PP, where𝑊 = 64.

4 16 64 2560

1×108

2×108

0

100

200

W

D
is

ta
nc

e 
C

om
pt

. Iteration D
epths

Iteration Depths
Distance Compt.

Figure 8. Dist. compt. in-
creases as iter. depths de-
crease for PP increasing𝑊 .

can reduce communication overhead. We implement it using
a bit vector for fast access.
5.2 Reduce Redundant Computation by Staged

Expansion
Although reducing the iteration depth significantly, does it
mean the search process will now get desired speedups on
multi-core architectures? The answer is no. The path-wise
parallelism reduces iteration depths but at the same time
introduces a considerate amount of additional distance com-
putations, especially when the number of parallel workers
is large. This is because path-wise parallelism increases the
likelihood for a thread to expand unpromising nodes that
could have been avoided in edge-wise parallelism: some ac-
tive vertices out of the expansion width𝑊 might not lead to
the final nearest neighbors from a future perspective. Fig. 7
shows that to reach the same recall (0.9–0.999), the path-
wise parallelism often needs to perform significantly more
distance computations than BFiS (1.3–3.5 times). Moreover,
we also observe that although the iteration depths continue
to decrease by increasing the concurrent expansion width
𝑊 , the number of distance computations inversely increases,
as shown in Fig. 8. The huge amount of redundant computa-
tions adversely affects the search efficiency as many threads
are loading vectors for unnecessary computations, wasting
memory bandwidth and compute resources.

To mitigate it, we investigate the usefulness of path-wise
parallelism at different search stages: at which stage does the
path-wise parallelism reduce the iteration depths the most?
We found that overall, in the beginning, since all candidates
are far from the query, those early expanded candidates are
likely to be discarded by closer ones that are visited later. In
other words, candidates expanded and checked at an earlier
stage have a high likelihood of becoming unnecessary from
a future perspective. As the search moves forward towards
the region that has the near neighbors, a larger expansion
width that covers more search paths can effectively prevent
the search from getting stuck at a local minimum.
Based on these observations, we propose a staged expan-

sion (SE) scheme by gradually increasing the expansionwidth
𝑊 and the number of workers every 𝑡 steps during the search
procedure. In practice, we set the starting value of𝑊 to 1
and the maximum value as the number of available hard-
ware threads. Then for every 𝑡 steps (e.g., 𝑡 = 1) we double
the value of𝑊 until𝑊 reaches its maximum. Fig. 9a shows
the comparison results of path-wise parallelism without and
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Figure 9. Comparison between path-wise parallelism with
and without staged expansion.𝑊 = 64.
with staged expansion. The staged expansion reduces the
number of redundant distance computations significantly,
leading to distance computations comparable to BFiS. On the
other hand, staged expansion is able to preserve the bene-
fits of path-wise parallelism in terms of obtaining reduced
iteration depths, as shown in Fig. 9b. These results indicate
that by performing path-wise parallelism at where they are
most effective (i.e., the later phase of the search), the par-
allel search process can effectively converge with reduced
iteration depths and very minimal addition of redundant
computations among multiple workers.
5.3 Reduce Synchronization Overhead by

Redundancy-Aware Synchronization
The remaining performance challenge in parallel search re-
sides in the synchronization, as we still need to decide when
to do synchronization. However, reducing the synchroniza-
tion overhead for graph-based ANNS is non-trivial. Fig. 10
shows that as we skip synchronizations in between search
iterations (i.e., increasing the interval between two synchro-
nizations), the synchronization overhead (shown as the ratio
to the total time) decreases significantly. However, decreas-
ing synchronization increases distance computations, es-
pecially when the synchronization intervals become large.
This is because as we increase the synchronization interval,
it increases the likelihood that individual workers would
search their local but unpromising areas without switching
to newly identified promising regions found by other work-
ers. As such, one cannot infinitely delay synchronization,
and a small set but useful synchronizations are desired to
achieve the overall high search efficiency without incurring
too many redundant computations.

Finding such intervals turns out to be non-trivial since the
relative distance of a query to its near neighbors changes all
the time at different stages. It is also hard to find one fixed
synchronization interval for all queries. To mitigate the syn-
chronization overhead, iQAN performs redundancy-aware
synchronization (RAS), which allows workers to perform a
search with low redundant computations by adding a mini-
mal set of global synchronizations.
Measuring redundant expansion via update positions.
We introduce a metric — update positions — to capture the
redundancy during expansion. When a worker thread ex-
pands an unchecked candidate, its unchecked neighbors are
then inserted into the worker’s local queue, and we define
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the update position as the lowest (best) position of all newly
inserted candidates. Thus, the average update position (AUP)
is the mean of all update positions of workers. Fig. 11 demon-
strates how an example query’s AUP changes during the
search process without doing any global synchronizations.
We observe that the AUP increases gradually to be equal to
the local queue capacity and remains flat to the end. When
the AUP is close to the queue capacity, it indicates that a
majority of workers are searching areas that cannot find
promising candidates to update their local results. Therefore,
a high AUP indicates that most workers are doing redundant
computations, and it would benefit from a global synchro-
nization such that all workers can focus on searching for
more promising areas that have a higher probability of in-
cluding closer near neighbors. Due to the space limitation,
the detailed algorithm of iQAN is described in the supple-
mentary material. It describes how to use AUP as a metric to
decide when to perform a lazy synchronization. Given the
queue capacity 𝐿 and a position ratio 𝑅 (0 < 𝑅 ≤ 1.0), the
threshold of AUP to do sync is set as 𝐿 ·𝑅. If the checker finds
that AUP is equal to or larger than the threshold, it triggers
a global sync. Empirically, we found that setting the ratio 𝑅
to 0.9 or 0.8 works well in most cases.

5.4 Cost Analysis
In this part, we examine the cost of iQAN executed on multi-
core processors. The running time of search using BFiS is:

𝑇𝑠𝑒𝑞 = 𝐼𝑠𝑒𝑞 ×𝐶𝑠𝑒𝑞 (2)
where 𝐼𝑠𝑒𝑞 represents the number of iterations to converge
to near neighbors, and 𝐶𝑠𝑒𝑞 represents the cost of node ex-
pansion within one step. Now consider the search with the
edge-wise parallelism with 𝑃 cores. This would lead to an
execution time:

𝑇𝐸𝑃 = 𝐼𝐸𝑃 × (
𝐶𝐸𝑃

𝑃
+𝐶𝑠𝑦𝑛𝑐 ) (3)

Since edge-wise parallelism only partitions the distance com-
putations during node expansion across 𝑃 workers while
still doing global synchronization after each step, 𝐼𝐸𝑃 = 𝐼𝑠𝑒𝑞
and 𝐶𝐸𝑃 = 𝐶𝑠𝑒𝑞 . The scalability of edge-wise parallelism
is limited because the iteration depth 𝐼𝐸𝑃 is large, and the
synchronization cost 𝐶𝑠𝑦𝑛𝑐 is still high. To reduce the itera-
tion depth, iQAN introduces path-wise parallelism, which
reduces 𝐼𝐸𝑃 to 𝐼𝑃𝑃 , where 𝐼𝑃𝑃 << 𝐼𝐸𝑃 .

𝑇𝑃𝑃 = 𝐼𝑃𝑃 (↓↓) × (
𝐶𝑃𝑃 (↑↑)

𝑃
+𝐶𝑠𝑦𝑛𝑐 ) (4)

However, by doing so, the node expansion cost increases
from 𝐶𝐸𝑃 to 𝐶𝑃𝑃 , where 𝐶𝑃𝑃 >> 𝐶𝐸𝑃 because path-wise
parallelism introduces redundant computations. To avoid re-
dundant computations and synchronization overhead, iQAN
further introduces staged expansion and redundancy-aware
synchronization, which reduces the node expansion cost
from𝐶𝑃𝑃 to𝐶𝑆𝐸 with minimal impact on the iteration depth
𝐼𝑃𝑃 while reducing the amortized synchronization overhead
from 𝐶𝑠𝑦𝑛𝑐 to 𝐶𝑅𝐴𝑆 , leading to a search cost:

𝑇iQAN = 𝐼𝑃𝑃 (↓↓) × (
𝐶𝑆𝐸 (↑)
𝑃
+𝐶𝑅𝐴𝑆 (↓)) (5)

5.5 Discussion: Why not use Δ-stepping?
Some parallel graph processing frameworks such as Galios [45]
and GraphIt [72] support various parallel processing algo-
rithms. Therefore, the careful reader may think why not
apply existing parallel graph processing algorithms, such as
Δ-stepping [55], to the vector search problem. To answer this
question, we apply Δ-stepping to graph-based ANNS with
a few modifications to make it adapt to vector search. First,
instead of keep increasing the number of buckets, which
leads to unbounded search latency, we keep a fixed length of
the priority queue and drop a vertex if it has a larger distance
than the last vertex in the queue. This change allows us to
control the search budget via adjusting the queue length and
avoid expanding candidates that are not promising for refin-
ing top-K. Second, we choose the first 𝐵 unchecked nodes in
the priority queue as the bucket. We do not use a distance
range because the range of pair-wise vector distances is very
dynamic due to the curse of dimensionality phenomenon.
Third, we find that using a single bucket size hurts the per-
formance significantly, for a similar reason as described in
Section 5.2. Therefore, we dynamically increase the bucket
size. Finally, we let Δ-stepping stop when the candidates
in the priority queue remain the same for two consecutive
iterations, same as iQAN . We provide comparison results
with Δ-stepping in Section 6.4.
6 Evaluation
6.1 Evaluation Methodology
Baselines. We compare iQAN with two state-of-the-art
graph-based ANNS, NSG [19, 20] and HNSW [38, 40]. NSG
employs BFiS, and HNSW uses a similar but slightly modi-
fied implementation adapted to its hierarchical index. The
hyperparameters used for building their indices are set based
on the suggested values from their code repo or papers if
provided by the authors. Otherwise, several values are tested,
and the best performance is reported.
Metrics. We use latency and recall to measure the perfor-
mance as described in Section 3. We measure Recall@100
(R@100), which measures the accuracy of finding the top-
100 nearest neighbors for every query, according to Eqn. 1
with 𝐾 = 100.
Datasets. This evaluation uses five datasets, which are stan-
dard benchmarks when evaluating NSG and HNSW. SIFT1M
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Figure 12. The first and second rows of figures show latency comparison among HNSW, NSG, and iQAN on KNL (32T) and
Skylake (16T), respectively.

(128D) and GIST1M (960D) are from the datasets introduced
by Jégou et al. [1, 28]; SIFT100M (128D) is sampled randomly
from the SIFT1B (bigann) introduced by Jégou et al. [29];
DEEP10M (96D) and DEEP100M (96D) are subsets from
DEEP1B that is released by Babenko and Lempitsky [7, 8]. Be-
yond these datasets, we also tried to evaluate the two billion-
scale datasets SIFT1B (128D) and DEEP1B (96D). However,
they easily run out of memory on our testbeds with 128GB
memory (e.g., DEEP1B would require >384GB memory to
load just the embedding vectors). This is probably also why
prior works did not evaluate these two datasets. Therefore,
we ran the billion-scale datasets on a specialized machine
with 1.5TB DRAM. We include the details of the datasets in
the appendix.
Implementation. Our implementation of iQAN is based on
the state-of-the-art NSG using C++ [19]. For a given dataset
(e.g., 1M–100M), we construct an NSG graph using the base
set. We use the hyperparameters suggested by the NSG code
repository to construct the graph due to their excellent per-
formance in practice. The original NSG paper did not eval-
uate the billion-scale datasets due to their huge memory
footprints. For billion-scale datasets, we use a machine that
has DRAM that is sufficiently large to build the NSG graph.
We then use the query vectors provided by the benchmarks
for final evaluation. We set the average update position ra-
tio as 0.8 for SIFT1M, GIST1M, and SIFT100M, and 0.9 for
DEEP10M and DEEP100M.
Platform and settings.We conduct our experiments on a
workstation with Xeon Phi 7210 (1.30 GHz) with 64 cores and
109 GB DRAM (KNL for short) and a workstation with Xeon
Gold 6138 (2.00 GHz) with 20 cores and 128 GB DRAM (Sky-
lake for short). To further evaluate two billion-scale datasets,
we use a machine with Xeon Gold 6254 (3.10 GHz) with 72
cores and 1.5 TB memory.

6.2 Evaluation of Latency Speedups
Fig. 12 compares the latency of HNSW, NSG, and iQAN
on KNL and Skylake. NSG and HNSW use their sequen-
tial search algorithm, whereas iQAN uses 32 threads and

16 threads, respectively, on KNL and Skylake. We make the
following observations.

First, across all five datasets, iQAN consistently provides la-
tency speedups over existing sequential-based approaches NSG
and HNSW over a wide range of recall targets. In particular,
the speedups from iQAN increase as the recall target moves
to the high accuracy regime (e.g., from 0.90 to 0.999). On
KNL, for R@100 targets 0.9, 0.99, and 0.999, iQAN achieves
2.2×, 5.9×, and 16.7× speedups over NSG on average over
five datasets, and 2.8×, 8.1×, and 27.6× over HNSW. iQAN
achieves even more latency speedups on large graphs. No-
tably, iQAN achieves up to 37.7× and 12.9× speedups over
NSG on DEEP100M on KNL and Skylake, obtaining an in-
credibly low latency of <5ms or <3ms at the recall target
0.999 by leveraging aggregated multi-core computation and
memory bandwidth resources. This enables vector search
with very high accuracy on large-scale graphs, even in ex-
tremely interactive online applications.
iQAN achieves significant latency speedups mainly be-

cause of three reasons. First, iQAN ’s path-wise parallelism
effectively reduces the iteration depths, making the sequen-
tial dependencies no longer a major bottleneck. This is par-
ticularly critical for a large graph (e.g., DEEP100M) and high
recall (e.g., 0.999) as seen in Section 4 that the iteration depths
increase significantly as we either scale the graph size or in-
crease the recall targets. Second, the reduced iteration depths
do not come at the cost of many redundant computations as
iQAN leverages staged expansion to effectively avoid redun-
dant computations from doing path-wise parallelism. Third,
iQAN significantly reduces the synchronization overhead
through redundancy-aware synchronization.
Second, the results also show that iQAN exhibits latency

speedups across different multi-core architectures. On Sky-
lake, for R@100 targets 0.9, 0.99, and 0.999, iQAN also achieves
1.8×, 3.6×, and 7.3× speedups on average over NSG, and 2.1×,
5.6×, and 14.0× over HNSW. These results indicate that the
optimizations in iQAN carry good portability across different
multi-core architectures.
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Figure 13. Recall@1 latency of DiskANN and iQAN on KNL.
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Figure 14. Percentile latency on KNL of iQAN & NSG.
Third, it is also worth mentioning that iQAN achieves

excellent speedups as we increase the dimensionality of the
embedding vectors. iQAN achieves up to 76.6× and 24.9×
speedups over HNSW on GIST1M on KNL and Skylake, re-
spectively. This is higher than the speedups we get on a
dataset with a similar scale but much smaller dimensional-
ity (e.g., SIFT1M). iQAN is able to achieve better speedups
on higher dimensional vectors because as the vector dimen-
sion increases, the amount of computation workload for the
pair-wise distance computation also increases, which allows
iQAN to benefit more from parallel computing.

Moreover, Fig. 13 compares the latency of DiskANN [26]
(using 1 thread with its in-memory index) and iQAN (us-
ing 32 threads) on KNL for Recall@1 targets. For building
its indices of datasets SIFT1M and GIST1M, DiskANN uses
𝐿 = 125, 𝑅 = 70, 𝛼 = 2, which are the same setting as
shown in its paper. For DEEP10M, DiskANN uses 𝐿 = 100,
𝑅 = 100, 𝛼 = 1.2. Fig. 13 shows that iQAN also achieves la-
tency speedups over DiskANN, especially for the high recall
regime. For example, for recall target 0.999, iQAN has about
180.5× average speedup on DiskANN among these three
datasets. For SIFT100M and DEEP100M, DiskANN requires
larger memory than KNL has for searching, which causes
Segmentation Fault.
Reducing tail latency. For online inference, tail latency
is as important, if not more, as the mean latency. To see
if iQAN provides steady speedups, we collect the 90th per-
centile (90%tile), 95th percentile (95%tile), and 99th percentile
(99%tile) latency of NSG and iQAN on KNL on SIFT100M and
DEEP100M at the recall target 0.999 in Fig. 14. The results
show that while NSG’s 99%tile compared to mean increases
significantly by 154% and 91% for SIFT100M and DEEP100M,
respectively, the iQAN ’s 99%tile increases only by 31% and
19%. iQAN leads to a relatively smaller increase in tail latency,
presumably because intra-query parallel search is particu-
larly effective in reducing latency on long queries.

6.3 Evaluation of Scalability
In this part, we evaluate the scalability of iQAN with respect
of the number of threads and graph scales.
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Figure 16. Analysis of super-linear speedups via profiling
distance computations and L1 misses of DEEP100M on KNL.
Improving scalability with more threads. Fig. 15 reports
the scalability of iQAN varying threads on KNL at differ-
ent recalls (0.99, 0.995, and 0.999). The results show that the
speedups increase as the target recall grows because the in-
creased distance computations to reach a higher recall offers
more parallelism opportunities. The average speedup of the
three datasets at recall 0.999 is 13.5×, 17.4×, and 15.3× for
16-, 32-, and 64-thread, respectively. iQAN starts to observe
diminishing return at 64 threads. For GIST1M that has high
dimensional vectors, it is because 32-thread iQAN has satu-
rated memory bandwidth. For other datasets, extra threads
introduce unnecessary expansions, so that adding additional
threads does not improve the latency further.
Exhibiting super-linear speedups. Fig. 15 also shows an
interesting phenomenon: iQAN demonstrates super-linear
speedup (up to 16 threads) for some high recall targets (e.g.,
0.999). For example, iQAN on KNL achieves 9.0 and 17.7
speedups on GIST1M and DEEP100M with 8 and 16 threads,
respectively. How is it possible for iQAN to achieve > 𝑃 times
speedups with only 𝑃 threads? To investigate this issue, we
perform profiling to examine the executed operations and
the cache behavior. Fig. 16 shows the profiled results on
DEEP100M at recall 0.999. The super-linear speedup appears
to come from two aspects: (1) Path-wise parallelism, together
with the staged expansion, allows iQAN to reduce both the
iteration depths and the redundant computations, which
ends up letting some range of processors (i.e. 2 to 16 threads)
to have a smaller number of distance computations. (2) iQAN
obtains super-linear speedups also due to utilizing more
cachememory effectively. As shown in Fig. 16, as we increase
the number of threads, there is a decrease in the aggregated
L1 cache misses since more cache memory is used in parallel
search, while the sequential search cannot. The L1 cache
misses increase from 𝑃 = 16 to 𝑃 = 64 because the total
amount of distance computations tends to increase in those
cases, where we stop seeing super-linear speedups.
Influence on inter-query. Fig. 17 shows iQAN ’s intra-
query latency and inter-query throughput on DEEP100M
with different thread settings for recall targets 0.995, 0.997,
and 0.999. We remark that although the goal of this paper is
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Figure 18. Scalability with varied graph sizes for iQAN , NSG,
and HNSW on KNL. iQAN uses 32 threads.
to accelerate the latency, with a proper inter-/intra-query set-
ting, iQAN can improve both query latency and through-
put simultaneously for high recall targets. For example, for
recall 0.999 on DEEP100M, iQAN using 4-way inter-query
+ 8-way intra-query parallelism outperforms NSG using 32-
way inter-query parallelism by 1.7× throughput (queries-
per-second or QPS) and 13.7× query latency improvement.

Varied inter-/intra-query configurations result in different
query throughputs and latencies. On the one hand, inter-
query parallelism increases the peak memory bandwidth
roughly proportionally to the number of parallel queries,
whereas its latency might be bounded by some long-latency
queries. On the other hand, intra-query parallelism using
multiple cores together can shorten the iteration depths and
increase the cache capacity but may incur computation and
synchronization overhead. As Fig. 17 shows, when using all
32 threads only for inter-query parallelism, the performance
is bounded by the memory bandwidth and some long-latency
queries. When the thread count of intra-query parallelism
increases from 1 to 4, latency shows a super-linear speedup.
This observation is consistent with the results in this subsec-
tion before that intra-query parallelism with a small number
of threads can reduce the iteration depths, the redundant
computations, and the cache misses. Moreover, the thread
count of inter-query parallelism decreasing from 32 to 8 also
reduces the memory bandwidth pressure. Therefore, there is
a performance improvement both in latency and throughput.
In Fig. 17, the improvement of throughput is more obvious
for recall 0.999 than 0.997 and 0.995, as 0.999 requires more
computation. When the thread count of intra-query paral-
lelism continues to increase from 8 to 32, latency shows a
sub-linear speedup because of the increased distance com-
putation and synchronization overhead. Therefore, there is
a decrease in throughput when the threads of inter-query
parallelism decrease from 4 to 1. In conclusion, with a proper
combination, inter- and intra-query together can achieve a
good throughput performance.
Improving scalability on larger graph sizes. Fig. 18 re-
ports the latency results of NSG, HNSW, and iQAN for the
recall of 0.9, 0.99, and 0.999, varying the data sizes from 1M
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Figure 19. Performance comparison of iQAN and NSG on
two billion-scale datasets SIFT1B (bigann) and DEEP1B.
to 100M. As the graph size increases, the speedup of iQAN
over NSG and HNSW increases. For example, for recall 0.999,
the speedup of iQAN over NSG grows from 5.9× to 37.7×
when the dataset size changes from 1M to 100M. These re-
sults confirm that iQAN is scalable and preferable to existing
search methods when the graph size increases.
Scaling to billion points. This experiment is conducted
on a machine with a 1.5 TB memory. It is worth mentioning
that even 1.5 TB of memory is not enough to build a 100-
NN graph with one billion data vectors. Therefore, we limit
the out-degree of NSG when generating the corresponding
NSG index so that the index construction can finish in a
reasonable amount of time (e.g.,<10 days). We also note that
this is the first time to evaluate an NSG graph at a billion scale
as the maximum graph prior work such as NSG evaluated
contained less than 100M data points. Fig. 19 compares the
latency of iQAN and NSG. iQAN uses up to 64 threads, and
the recall target is 0.9. When using 64 threads, iQAN follows
the trend of scalability we observed as we increase the graph
size and outperform NSG with 11.5× and 16.0× speedup for
SIFT1B and DEEP1B, respectively, confirming the excellent
scalability of iQAN on large-scale graphs again.
6.4 Performance Breakdown and Analysis
This section performs a series of experiments to show where
iQAN ’s improvements come from. It first compares iQAN ’s
performance with several alternative parallel search schemes.
(i) EdgeWise: NSG with edge-wise parallelism. (ii) PathWise:
path-wise parallelismwithout the staged expansion nor redu-
ndancy-aware synchronization. (iii) NoStaged: iQAN with-
out the staged expansion. (iv) NoSync: it performs path-wise
parallelism but never synchronizes among workers until
the very end. (v) Exhaust: it uses an exhaustive search to
preprocess the dataset and obtain the proper synchroniza-
tion settings. It should have the best latency performance,
although requiring more than ten hours of tuning for the
given dataset. (vi) iQAN : the full version with path-wise
parallelism, staged expansion, and redundancy-aware syn-
chronization. Apart from the above analysis, we also include
a comparison with Δ-stepping. We apply the modifications
described in Section 5.5 and denote the config as Δ-step∗. We
report results on the DEEP100M dataset with 32 threads on
KNL in Fig. 20. Other datasets and threads show the same
trend and thus are omitted due to the space constraint.
Latency improvements breakdown. Fig. 20a first reports
the latency results of all versions. Compared with EdgeWise,
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Figure 20. Performance w/ 32 threads (KNL) on DEEP100M.
PathWise has a 1.7× speedup on average for all recall cases
because of the iteration depths reduction from path-wise par-
allelism, and NoStaged has an extra 4.9× speedup on average
because the redundancy-aware synchronization still reduces
the overhead from frequent global synchronizations. Exhaust
has a 1.5× speedup over NoStaged and a 1.3× speedup over
NoSync mainly due to its reduction in redundant computa-
tions from using staged expansion and its infrequent syn-
chronizations. Exhaust achieves slightly better performance
than iQAN (i.e., a 1.1× speedup). However, iQAN does not
require the expensive offline tuning process as Exhaust.
Effects on iteration depths. Fig. 20b profiles the iteration
depths, where EdgeWise and PathWise result in the most and
the fewest, respectively. All other five settings result in com-
parable iteration depths to PathWise. This is because Path-
Wise employs a fixed and relatively large number of multiple
paths throughout search, resulting in the most aggressive
exploring. Its high synchronization frequency makes its iter-
ation depth smaller than NoStaged. Meanwhile, iQAN and
Exhaust adopt staged expansion that slightly increases the
iteration depths but significantly reduces distance computa-
tions, and NoSync suffers more divergence than them.
Effects on distance computation. Fig. 20c profiles the
number of distance computations. NoStaged leads to more
distance computations than others except NoSync to achieve
the same recall (especially for low recall cases). PathWise
has smaller distance computations than NoStaged, thanks
to its frequent synchronization. While completely removing
synchronization, NoSync has the most distance computa-
tions. However, as shown in Fig. 20a, it still achieves lower
latency than NoStaged because synchronization overhead
can dominate the total search time when the number of
parallel workers is large. Although iQAN and Exhaust do
not synchronize as frequent as PathWise, they have lower
distance computation thanks to staged expansion.
Effects on synchronization overhead. Fig. 20d reports
the execution time breakdown of six approaches that ap-
ply our design. It splits the execution time into three parts:

the Expanding (Expand), the Merging (Merge), and the Se-
quential (Seq). Expand denotes the parallel phase of a query
that workers expand their unchecked candidates. It con-
sists of computing distances and inserting visited neighbors
into their queues. Merge denotes the phase in which work-
ers merge their local queues into a global queue after they
complete expansion. It reflects the major synchronization
overhead. And sequential execution of a search is included
in Seq. All results are for recall 0.999. Fig. 20d shows that
the redundancy-aware synchronization strategy effectively
mitigates the synchronization overhead, allowing iQAN to
achieve a similar portion of synchronization overhead as
Exhaust (∼2%) and a much smaller portion than PathWise.
Comparison with Δ-stepping. We observe that our im-
proved version of Δ-stepping (Δ-step∗) reaches a comparable
latency as iQAN at the low recall regime (e.g.,0.90). How-
ever, as we increase the recall target (e.g., to 0.95 and 0.99),
Δ-step∗’s latency increases more significantly than iQAN ,
e.g., iQAN achieves 14.1× speedup over Δ-step∗ at recall
target 0.999 and on average 3.3× speedup across a range
of recall targets. By further analyzing the results, we find
that although Δ-step∗decreases the iteration depth and the
amount of redundant distance computations, synchroniza-
tion overhead becomes a crucial factor that affects the overall
search efficiency. In contrast, iQAN ’s update-position-based
redundancy-aware strategy helps significantly reduce the
synchronization overhead, especially at the high recall range,
without hurting accuracy, leading to faster search speed.
7 Conclusion
This work looks into the problem of accelerating graph-based
ANNS latency on multi-core systems, performing several
studies to revealmultiple challenges in exploiting intra-query
parallelism for speeding up ANNS. Based on the studies, we
propose iQAN , a parallel graph search algorithm that takes
advantage of multi-core CPUs to significantly accelerate the
search without compromising search accuracy. Evaluation
results show that iQAN is able to outperform two state-of-
the-art methods NSG and HNSW on a wide range of real-
world datasets while enjoying excellent scalability as the
graph size and accuracy target increases, enabling vector
search with very high accuracy on large-scale graphs even
in extremely interactive online applications.
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A Artifact Evaluation
A.1 Getting Started Guide
A.1.1 Availability. The artifact is available on Zenodo
(https://doi.org/10.5281/zenodo.7322631) and GitHub (https:
//github.com/johnpzh/iQAN_AE). Please note the artifact on
GitHub does not contain the SIFT1M dataset because it ex-
ceeds the platform’s file size limit. If using GitHub, please use
the command to clone the repository into the local directory
iQAN_AE.

1 git clone https :// github.com/johnpzh/iQAN_AE.git

A.1.2 Hardware Environment. The artifact is supposed
to be run on an Intel CPU with at least 32 cores and support
AVX2 intrinsics. It does not use hyperthreading.

To run the quick script, the artifact requires 2 GB disk
space and 4 GB memory. To run all full scripts, it needs 300
GB disk space and 80 GB memory. The particular number of
required space are shown in Table ??.

A.1.3 Software Environment. Some libraries and pro-
grams are required to build and run the artifact.

Libraries:
• Boost C++. The artifact is tested on version 1.53. To
install Boost C++ on Ubuntu, please use the command

1 sudo apt install libboost -all -dev

• OpenMP. The artifact is tested on version 5.0.
• Matplotlib for plotting figures. The artifact is tested on
version 3.1.2. To install Matplotlab in Python, please
use the command

1 python -m pip install -U matplotlib

Programs:
• CMake for building the program (>= 3.9). The artifact
is tested on 3.17.
• C++ Compiler, recommending Intel C++ Compiler (>=
19.0.1). The artifact is tested on GCC 4.8.5 and ICC
2021.4.0.
• Bash or Zsh for shell scripts.
• Python3 for Python scripts. The artifact is tested on
3.7.11.

A.1.4 Build. A script is provided to build the artifact.
Under the project directory, please run this command to

build the artifact:
1 bash ./ build.sh

If using the Intel ICC compiler, please run this command
with the option icc:

1 bash ./ build.sh icc

This command creates a directory cmake-build-release
and builds the program under it.

Table 2. Dataset sizes and running time.
Datasets SIFT1M GIST1M DEEP1M DEEP10M SIFT100M DEEP100M

base file (GB) 0.5 3.6 0.3 3.7 49 37
NSG index (GB) 0.1 0.08 0.1 1.7 19 14
HNSW index (GB) 0.6 3.8 0.5 5 62 50
query file (MB) 5 3.7 3.8 3.8 5 3.8

groundtruth file (MB) 7.7 0.7 7.7 7.7 7.7 7.7
running time (hr) 3.5 12 5 15 24 30

A.1.5 QuickRun. A quick script can run the artifact using
the included dataset SIFT1M. Please note the script should
be run under the build directory.

1 cd cmake -build -release

2 bash ../ scripts/run.quick.sh

This script runs iQAN , NSG, and HNSW for six recall tar-
gets (Recall@100) 0.9, 0.95, 0.99, 0.995, 0.997, and 0.999 on the
dataset SIFT1M. It takes about 30minutes to finish depending
on the machines (e.g., 1 hour on KNL). The script can gen-
erate a figure fig.quick.png under the current directory
cmake-build-release.
The generated figure should reflect the same trend as

Fig. 13 in the paper, although the quick script only collects
results for six recall targets. The figure provides a glimpse
showing that iQAN can achieve latency speedup over NSG
and HNSW for given recall targets.

A.2 Step by Step Instructions
A.2.1 Prepare Datasets. (If you use remote access, you
do not need to prepare datasets as are ready to use.) The
artifact is delivered with the included dataset SIFT1M, which
is relatively smaller than other datasets used in the paper.
Table 2 shows the sizes of all five datasets. Besides SIFT1M,
the artifact provides scripts to download five other datasets.
To download a particular dataset, please run the commands
under the directory data/:

1 cd data

2 bash ../ scripts/get.xxx.sh

Here xxx can be replaced by either gist1m, deep1m, deep10m,
sift100m, or deep100m.
For a given dataset, iQAN uses a base file containing all

data vectors, a query file containing all query vectors, a
ground-truth file containing the real 100 nearest neighbors
of all queries, and an NSG index file generated by using
NSG implementation (https://github.com/ZJULearning/nsg).
The NSG index can also be used by NSG searching method.
Additionally, the HNSW index is generated by using HN-
SWLib (https://github.com/nmslib/hnswlib), which is used
by HNSW searching method.

A.2.2 Run Scripts for Latency-vs-Recall Curves. After
a particular dataset is ready, one can run iQAN , NSG, and
HNSWupon the dataset by using the dataset’s corresponding
script provided by the artifact.

1 cd cmake -build -release

2 bash ../ scripts/run.xxx.sh

Here xxx can be replaced by either sift1m, gist1m, deep10m,
sift100m, or deep100m.

https://doi.org/10.5281/zenodo.7322631
https://github.com/johnpzh/iQAN_AE
https://github.com/johnpzh/iQAN_AE
https://github.com/ZJULearning/nsg
https://github.com/nmslib/hnswlib
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This script runs iQAN , NSG, and HNSW for nineteen re-
call targets from 0.9 to 0.999 on the corresponding dataset.
The estimated running time of datasets is shown in Table ??.
The script can generate a figure fig.xxx.png, under the
build directory cmake-build-release. The figure shows
the latency-vs-recall curves for iQAN , NSG, and HNSW,
which are the main results of the evaluation in the paper
(Fig. 13). The shorter latency is better.

A.2.3 Run Scripts for Speedup. To get the speedup re-
sults, please run

1 cd cmake -build -release

2 bash ../ scripts/run.speedup_xxx.sh

Here xxx can be replaced by gist1m, deep10m, sift100m, or
deep100m.

This script runs iQAN recall targets 0.99, 0.995, and 0.999
on the corresponding dataset using 1 to 64 threads. The script
can generate a figure fig.speedup.xxx.png under the build
directory cmake-build-release. The figure shows iQAN ’s
speedup over its 1-thread latency (Fig. 15). The larger speedup
is better.

A.2.4 Run Scripts for Graph-Size Scalability. To get
the graph-size scalability results, please run

1 cd cmake -build -release

2 # First , download dataset DEEP1M if not yet

3 bash ../ scripts/get.deep1m.sh

4 bash ../ scripts/run.graph_scale.sh

This script runs HNSW, NSG, and iQAN for recall targets
0.9, 0.99, and 0.999 on the datasets DEEP1M, DEEP10M, and
DEEP100M. A figure fig.graph_scale.png will be gener-
ated under the build directory cmake-build-release. The
figure shows iQAN ’s scalability over large graphs (Fig. 18).

A.2.5 Programs, Parameters, and Scripts. The iQAN
mainly uses the following files for its implementation for rela-
tively small datasets such as SIFT1M, GIST1M, andDEEP10M,

1 app/PSS_v5_distance_threshold_profiling.cpp

2 core/Searching .202102022027. PSS_v5.dist_thresh.

profiling.cpp

For large datasets such as SIFT100M andDEEP100M, iQAN
mainly uses:

1 app/PSS_v5_LG_distance_threshold_profiling.cpp

2 core/Searching .202102031939. PSS_v5.large_graph.

dist_thresh.profiling.cpp

The two versions use the same search algorithm, while the
small-dataset version uses a flatted graph format to improve
the data locality. Correspondingly, NSG also use the same
format for small dataset. For large datasets, the flatted format
causes too large memory footprint. In that case, iQAN and
NSG uses the standard graph format.

The iQAN takes the following parameters:

1 PSS_v5_distance_threshold_profiling

2 <data_file > <query_file > <nsg_file >

3 <K> <place_holder > <true_NN_file > <num_threads

>

4 <L_low > <L_up > <L_step >

5 <place_holder > <place_holder > <place_holder >

6 <X_low > <X_up > <X_step >

7 <place_holder > <place_holder > <place_holder >

• data_file: the input file containing all vectors, such as
sift_base.fvecs
• query_file: the input query file containing all query vec-
tors, such as sift_query.fvecs
• nsg_file: the input NSG index file, such as sift.nsg
• K: the value K as in Top-K, which is set as 100 for current
implementation
• true_NN_file: the input file contains the real top-100
neighbors’ IDs for all queries, used for computing the recall
• num_threads: the number of threads
• L_low, L_up, and L_step: the settings for the capacity of
queues (the value L). A larger L uses larger queues, which
can improve the search accuracy but also increase the
search latency. Here the program will run multiple times
with different values of L from L_low to L_up (inclusive)
with step L_step. For example, a setting of (100, 102, 1) lets
the program run with L as 100, 101, and 102. A user can
then choose the expected output that satisfies the accuracy
target and also achieves the shortest latency.
• X_low, X_up, and X_step: the settings for the synchroniza-
tion frequency (the value X). A larger X has less frequent
synchronization (merging local queues) among threads,
which can reduce the synchronization overhead, improve
the search accuracy but also increase the distance compu-
tation overhead. Similar with L, here the program will run
multiple times with different values of X from X_low to
X_up (inclusive) with step X_step.

Under the directory scripts/, the shell script sh.iqan_xxx.
sh drives the program. First, it uses the python script test51.
PSS_v5_dt_profiling_ranged_L.py to provide input and
format the output. Second, it uses the python script output_
find_runtime_above_presicion.py to select the output
of best performance. The final output can then be used to
generate figures by the script run.xxx.sh.
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