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Abstract—Graph problems are common across many fields,
from scientific computing to social sciences. Despite their im-
portance and the attention received, implementing graph al-
gorithms effectively on modern computing systems remains a
challenging task that requires significant programming effort
and generally results in customized implementations. Current
computing and memory hierarchies are not architected for
irregular computations, resulting performance that is far from
the theoretical architectural peak. In this paper, we propose
a compiler framework to simplify the development of graph
algorihtm implementations that can achieve high performance
on modern computing systems. We provide a high-level domain
specific language (DSL) to represent graph algorithms through
sparse linear algebra expressions and graph primitives including
semiring and masking. The compiler leverages the semantics
information expressed through the DSL during the optimization
and code transformation passes, resulting in more efficient IR
passed to the compiler backend. In particular, we introduce
an Index Tree Dialect that preserves the semantic information
of the graph algorithm to perform high-level, domain-specific
optimizations, including workspace transformation, two-phase
computation, and automatic parallelization. We demonstrate that
this work outperforms state-of-the-art graph libraries LAGraph
by up to 3.7× speedup in semiring operations, 2.19× speedup in
an important sparse computational kernel, and 9.05× speedup
in graph processing algorithms.

Index Terms—compiler, optimization, graph algorithms, tri-
angle counting, breadth-first search, code generation, semiring,
masking, sparse linear algebra

I. INTRODUCTION

Graphs data structures are used in many domains, from
computer security [1] and computational genomics [2] to
network sciences [3] and scientific computing [4], to represent
complex interactions and casual relationships (edges) among
entities (nodes). While graphs adapt well to solve problems at
different scales, real-life problems often produce graph data
structures that are highly irregular and extremely large. These
two factors pose challenges while implementing efficient graph
algorithms on modern computer architectures, which have
been developed and optimized mostly for regular computation.
To achieve high-performance, developers are often forced to
write ad-hoc code specifically tailored for given architectures
using a fairly low-level programming language, such as C/C++
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or CUDA, which, then, impedes the portability of the imple-
mentation on different systems, productivity, and reusability.
With the proliferation of modern computing systems, the
current practice of manually reimplementing graph algorithms
for each new architecture is simply not sustainable.

In this work, we seek a solution to develop graph algo-
rithms that provide high performance on modern computer
architectures but do not hinder portability and productivity.
In this endover, we identify two main challenges: 1) find the
right level of abstraction to represent graph algorithms and
2) lower that abstraction to efficient machine code. The level
of abstraction should be high enough to enable developers
to express graph algorithms effectively and with notations
that make sense in the application domain, both of which
increase productivity. Hand-tuned, architecture-specific imple-
mentations (e.g., CUDA) may achieve high performance but
developing such solutions is time-consuming and not portable
across systems. The abstraction should carry sufficient seman-
tics information to be used during code optimizations and
machine code generation to increase performance on specific
architectures. Finally, the abstraction should be architecture-
independent and semantically rich to guarantee portability
across different systems. In fact, it is generally easier to
port high-level operations (e.g., sparse matrix-sparse matrix
multiplication) than low-level constructs (e.g., nested loops)
across systems. In this work, we opt for (sparse) linear
algebra as a reasonable programming abstraction to develop
efficient graph algorithms. Algebraic representations of graph
algorithms are architecture-independent, sufficiently high-level
so that users can effectively implement graph applications
in their domains, and carry enough semantics information
to inform the underlying system about which architecture-
independent and architecture-specific optimizations should be
employed. Compared to vertex-based and edge-traversal im-
plementations, algebraic representations provide a compact
and expressive way to represent graph algorithms, carrying
semantic information through the characteristics of the matrix
used to represent the graph [5], [6], are easier to develop,
more portable, and can leverage a large body of research and
optimization.

The second challenge is represented by mapping (lowering)
the high-level abstraction to efficient code for specific com-
puting systems. The inherent irregularity of graph processing



algorithms and the size of real-life graphs pose considerable
challenges when performing this process. The sheer size of
real-life problems makes it difficult, if not impossible, to store
graphs (i.e., adjacency matrix) using dense data structures.
Given the intrinsic sparse nature of graph structures, storing
graphs in dense format would introduce excessive pressure on
the memory subsystem and unnecessary computation. Efficient
graph implementations generally prefer sparse representations
of the graph to reduce memory requirements and use sparse
operators to increase computing efficiency by eliminating
unnecessary computation. However, modern computing archi-
tectures and memory technologies have been designed and
optimized for dense computation and do not perform as
well for sparse computation [7]. The process of lowering
high-level abstraction to efficient machine code must employ
different kinds of optimizations, both architecture-independent
and architecture-specific, and should be performed at all
levels of the lowering process. First, the language should
provide high-level, graph-oriented operators that carry enough
information for efficient code generation. Second, architecture-
independent, graph-specific optimizations, such as fusion and
automatic parallelization, should be applied to the high-level
code. Next, generic architecture-independent optimizations
(loop unrollling, dead code elimination, etc.) should be con-
sidered. Finally, the resulting code should be optimized for
the target architecture. This process should be automated to
increase productivity and portability and, to the extend that
the abstraction carries enough semantics information, should
have the user out of the loop.

In this work, we propose a domain-specific compiler frame-
work to develop graph algorithm implementations that can
achieve high performance, are portable across different sys-
tems, and are easy to develop. We propose a high-level
Domain-Specific Language (DSL) to represent graph algo-
rithms through (sparse) linear algebra expressions and specific
graph-oriented operators. The DSL allows users to embed
domain-specific semantics that is leveraged internally during
code generation through a series of optimizations and lowering
steps to generate efficient Intermediate Representation (IR),
such as specific graph primitives including semiring and
masking. The proposed compiler is based on a multi-level IR
and progressive lowering from high-level IRs (or dialects) that
encapsulate the semantics of the application to low-level IRs,
which are closer to the architecture. The compiler leverages the
semantics information expressed through the DSL during the
optimization and code transformation passes. This generally
results in more efficient IR that can be passed to the compiler
backend (e.g., LLVM) to generate machine code compared
to general-purpose programming environments, such as C or
C++. In particular, we introduce an Index Tree Dialect. This
dialect preserves the semantic information of the graph al-
gorithm to perform high-level, domain-specific optimizations.
Several code optimizations and transformations are applied
while lowering the index tree IR to lower-level dialects in
the compilation pipeline, including optimizations specifically
developed in this work: workspace transformation, two-phase

computation, and automatic parallelization. Workspace trans-
formation takes advantage of intermediate dense structure to
improve the data locality and reduce computation complexity
while preserving the sparse format of the resulting outputs.
The two-phase computation employs symbolic computation
to deduce the minimum size for the output’s sparse data
structure. We also introduce a novel optimization algorithm
that leverages the symbolic information to perform automatic
parallelization of sparse linear algebra primitives.

We show that by combining our DSL, optimizations
(workspace transformation, two-phase computation, and paral-
lelization), and efficient graph primitives (semiring and mask-
ing), we are able to outperform state-of-the-art graph libraries
(e.g., LAGraph [6], which implements the GraphBLAS stan-
dard [8]) by a significant margin. We evaluate the performance
of several graph primitives and graph processing algorithms.
Our results show that our work outperforms LAGraph by up to
3.7× for semiring operations, 2.19× for SpGEMM kernel, and
9.05× for graph processing algorithms Breadth First Search
(BFS) and Triangle Counting (TC). In summary, this work
makes the following contributions:
• a novel compiler framework and DSL, which enable users to

productively develop the algebraic implementation of graph
algorithms and achieve high-performance.

• important graph primitives (semirings and masking op-
erations) and code optimizations and transformations
(workspace transformation, two-phase computation, paral-
lelization) for efficient execution;

• a performance evaluation of sparse linear algebra kernels
and two prominent graph processing algorithms and com-
parison with LAGraph.
The rest of this work is organized as follows: Section II

provides an overview of the compiler; Section III introduces
the code generation optimizations of graph computations;
Section IV demonstrates extended linear algebra primitives
for graph algorithms; Section V provides an exhaustive perfor-
mance evaluation; finally, Section VI and Section VII compare
this work to other efforts and draw conclusions, respectively.

II. OVERVIEW

This work proposes a domain-specific compiler framework
to develop efficient graph algorithms represented by linear
algebra operations. Our work adheres to the GraphBLAS stan-
dard, which provides a comprehensive set of graph primitives
for sparse matrices and vectors of various types and extends
the traditional linear algebra operators with semirings and
masking to achieve higher performance. The GraphBLAS-
based approach provides a consistent way for graph algorithm
implementation through common graph primitives that can
be optimized using well-studied techniques, and it avoids the
complexity of writing different ad-hoc implementations com-
mon with traditional vertex- or edge-centric approaches [9]–
[11]. In most cases, the algorithmic complexity of the graph
algorithms implemented using linear algebra is close to the
complexity of the implementation based on vertex- or edge-
transverses [12]. Given a graph G(V,E), where V is the set of



N vertices (or nodes) in the graph and E is the set of M edges
that connect two vertexes, such that eij ∈ E iff there are two
vertexes vi, vj ∈ V and there exists an edge between the two.
While graphs can be represented in various forms, such as a
list of edges and the vertices they connect, a graph G(V,E) in
algebraic implementations of graph algorithms is represented
as an adjacency matrix A of size NxN , where the elements
aij = 1 iff there exists an edge eij ∈ E. Once a graph
is represented as an adjacency matrix, the implementation
of graph algorithms can leverage well-defined linear algebra
operations. For example, visiting all neighbors from a source
vertex vi only requires multiplying the adjacency matrix A by
a vector x that has all zero elements except xi. Similarly,
multiplying A by itself k times yields relations between
vertices at distance k. For example, A2x and Akx return the
neighbor lists that are two and k hops away, respectively.
Given the nature of graphs, generally N2 ≫ M , hence A
is very sparse. Storing A in a dense format unnecessarily
increases the memory and computing requirements and results
in inefficient execution. This framework employs sparse linear
algebra operators to reduce both the memory and computing
requirements, as only the non-zero elements of A need to be
stored in memory and considered during the computation.

The proposed DSL is based on index notation (or Einstein
notation), which is a concise, expressive, and widely used way
to express dense and sparse tensor computations. For example,
the multiplication of two matrices A and B can be expressed
as Cij = Aik ∗ Bkj , where i and j are the free indices
that appear in the output, whereas, the remaining indices
are the summation indices, k in this case. This concisely
represents the following operation for each entry of the output
matrix C:

∑N
k=1 aikbkj , assuming that all matrices are of

size NxN . The Einstein notation is adopted and supported
in many common programming models to express tensor
operations, such as the numpy.einsum API in NumPy [13],
PyTorch (torch.einsum) and TensorFlow (tf.einsum).
It is also the input language in deep learning frameworks such
as Tensor Comprehension [14], and sparse tensor compilers
such as TACO [15] and COMET [7], [16]. All these libraries
and frameworks implement some variant of the original Ein-
stein notation to expand the expressiveness. In this work,
we adopt a consistent Einstein notation semantic as used
by numpy.einsum and state-of-the-art compilers [7], [15].
We refer the reader to the numpy.einsum API page for a
more comprehensive description of the notation. Note that a
summation or contraction index is implied if an index variable
appears on the right-hand-side tensors but not on the left-hand-
side tensor. In addition, a custom function can be specified to
express other types of reduction other than summation, such as
Ai = max(Bij). It is also possible to express operations such
as MTTKRP (Matricized Tensor Times Khatri-Rao Product)
as Air = Bijk ∗Djr ∗ Ckr, where the index variable j and k
are summed. The sparse formats of each tensor are specified as
type annotations, and a compiler will automatically generate
code from the expression in the back end. Also, note that for
some operation sequences, the order of evaluation can result

in different asymptotic time complexities, such as a chain of
matrix multiplications [7]. In this work, we assume such order
is already determined and do not attempt to reorder matrix
multiplications.

From an implementation point of view, the proposed com-
piler is based on the Multi-Level Intermediate Representation
(MLIR) framework and built on top of COMET [7], [16].
COMET is a dense and sparse tensor algebra compiler that
targets multiple architectures. It has been extensively used
to optimize dense tensor contractions within the NWChem
quantum chemistry framework [7], [17]. The work introduces
specific code optimizations and transformations for sparse lin-
ear algebra operators, and DSL support to implement algebraic
formulations of graph algorithms. MLIR, which is part of the
LLVM ecosystem, provides a solid foundation to build new
compiler frameworks and a set of common optimizations and
code transformation passes, such as loop unrolling, tiling, and
vectorization. New optimizations and architectures added to
the MLIR framework will be readily available to the proposed
compiler and its users.

III. EFFICIENT CODE GENERATION OF GRAPH
COMPUTATION

The proposed compiler is based on the MLIR framework,
which provides a multi-level IR and an infrastructure to
perform progress lowering. The key insight in MLIR, hence
in this work, is that different optimizations can be performed
at each level of the IR stack (or dialects), from high-level,
domain-specific optimizations at higher levels to architecture-
specific optimizations at low levels and that optimizations and
dialects can be composed to efficiently generate executable
code for various target architectures.

A. Index Tree Dialect

This work introduces a new MLIR dialect, the Index Tree
dialect, between the COMET’s existing tensor algebra dialect
and the MLIR Structured Control Flow (SCF) dialect with
the specific objective of performing efficient code transfor-
mation and optimizations for sparse computation. The index
tree dialect is a representation of an index tree notation,
which is widely adopted by various code generation models
of tensor computations [15], [18], [19]. While the COMET
tensor algebra dialect is designed for traditional tensor algebra
operators, the index tree dialect provides a generic and effi-
cient representation of computing expressions (operators and
their relations) based on two types of nodes, indexation, and
computation nodes. The specific instantiations of the nodes are
determined by the computation expressed in the tensor algebra
dialect during lowering. However, the index tree nodes are
not limited to the traditional tensor algebra operators and can
be used to implement extended operators, such as semiring
and masking, as described in Section IV. As discussed later,
these extended operators are fundamental to achieving high
performance with graph algorithms.

Listing 1 and Listing 2 show examples of code (matrix mul-
tiplication) represented in the tensor algebra dialect (ta.mul)



1 %C = "ta.mul"(%A, %B) {
2 formats = ["CSR", "CSR", "CSR"],
3 indexing_maps = [
4 affine_map<(d0, d1, d2) -> (d0, d1)>, //C[i,k]
5 affine_map<(d0, d1, d2) -> (d1, d2)>, //A[i,j]
6 affine_map<(d0, d1, d2) -> (d0, d2)>], //B[j,k]
7 semiring = "plus_times"} //matrix multiplication
8 : (tensor<?x?xf64>, tensor<?x?xf64>, !ta.range, !ta.

range) -> tensor<?x?xf64>

Listing 1: The sparse matrix-matrix multiplication operation
represented in the tensor algebra dialect. Multi-dimensional
memory references are indexed with affine maps.

1 %1 = "it.computeRHS"(%a, %b) ...{} -> tensor<*xf64>
2 %2 = "it.computeLHS"(%c) ...{} -> tensor<*xf64>
3 %3 = "it.compute"(%1, %2) {semiring = "plus_times"}
4 %4 = "it.indices"(%3) ...{}
5 %5 = "it.indices"(%4) ...{}
6 %6 = "it.indices"(%5) ...{}
7 %7 = "it.tree"(%6) ...{}

Listing 2: The sparse matrix-matrix multiplication operation
represented in the index tree dialect highlighting the tree
structure with index and compute nodes.

and lowered to index tree dialect, respectively. The code in
Listing 2 can be read from bottom to top, i.e., it.tree oper-
ation represents the root of the index tree. The it.indices
operations represent the various indices used in the tensor
multiplication operation, which would be i, j, k. These nodes
of the tree will directly map to three nested loops needed
for this operation. The next three operations in the index tree
dialect represent the body of the loop. In this case, compute
operation forms a segue between index operations and the
compute operations. The compute operation maintains the
compute expression that is formed via the computeLHS,
computeRHS operations. Once the lowering to SCF dialect
is complete, the code is ready to be consumed within the
downstream MLIR infrastructure to generate machine code.

B. Code Optimizations and Transformations

To provide efficient code generation for sparse kernels,
this work addresses three major challenges during the code
generation: 1) high insertion cost into sparse output tensors
2) the unknown size and distribution of nonzero elements in
sparse output tensors, and 3) the difficulty of parallelization.

1) Workspace Transformation: In general, inserting a new
element into the sparse data structure of the output tensor has
a high time complexity. To eliminate this complexity, most
compiler frameworks and libraries store the output of a sparse
computation in a dense format. Although this approach greatly
reduces the cost of computation, it may lead to “densification”
of the data structures and increased memory footprints for the
output results, which may result in unnecessary wasted space
and an inability to execute.

To address these challenges, we developed a novel approach
called workspace transformation to store sparse output directly
in sparse formats such as CSR. The workspace transforma-
tion introduces temporary intermediate dense data structures
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j j k,j
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Cij+=Aik* Bkj Wj+=Aik* BkjWj=0 Cij=Wj Wj+=Aik* BkjWj=0 Cij=Wj

(a) (b) (c)

Index node
Compute node

Fig. 1: The index trees (a) before and (b,c) after applying the
workspace transformation on C in index j, given a matrix
multiplication operation.
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Cij=Aij .* Bij Wj=BijWj=0 Cij=Aij .* Wj

(a) (b)

Index node
Compute node

Fig. 2: The index trees (a) before and (b) after applying the
workspace transformation on B in index j, given an element-
wise multiplication operation.

(called the workspace) to avoid irregular access to the original
sparse data structures. This not only simplifies the code
generation algorithm, but also improves the data locality of
the generated code by narrowing some irregular access to the
dense data structure. Unlike previous work that [20] requires
users to determine the index to apply workspace transforma-
tion, in this work, the compiler automatically identifies the
index involved based on the storage format.

The workspace transformation can be applied to two types
of indices in a sparse-sparse expression: input indices as-
sociated with sparse dimensions in both input tensors and
output indices associated with sparse dimensions in the output
tensor. The workspace transformation performed depends on
the indices to which it is applied.

Consider two sparse matrices Aik and Bkj stored in the
CSR format. The expression Cij = Aik ∗ Bkj produces a
sparse output Cij , where the index j is associated with a sparse
dimension. In this case, the compiler applies the workspace
transformation to the index j as output index. The index
trees before and after workspace transformation are shown
in Figure 1: Figure 1(a) shows the original index tree for
a pure sparse matrix multiplication operation; Figure 1(b)
shows the index tree after applying the workspace to C on
index j. The data in dimension j of C is represented with a
temporary dense vector W ; Figure 1(c) shows the index tree
after enabling loop-invariant optimizations, in which unused
indices of the leaf nodes are removed. In particular, the
temporary dense vector W is independent of the index k, so
k can be safely removed. Before workspace transformation,
the time complexity of random access to the sparse output
index j is O(log n) from searching (assuming the indices
are sorted), and the insertion complexity is O(n) from data
movement. After workspace transformation substitutes the



sparse index j with the dense vector W , the complexity of both
random access and insertion is reduced to O(1). Therefore, the
workspace transformation can provide asymptotic performance
improvement for the sparse outer index.

Now consider the element-wise expression Cij = Aij .∗Bij ,
where index j is associated with a sparse dimension in both the
input matrices A and B. In this case, we apply the workspace
transformation on the input matrix B. The index trees before
and after workspace transformation are shown in Figure 2,
where the data in dimension j of B are temporarily preserved
by a dense vector W . Before workspace transformation, it-
erating the sparse input index j on both the sparse matrices
A and B simultaneously requires a merge while loop with
compound conditionals. After workspace transformation, the
linear traverse of index j in matrix B can be replaced by
random access to the dense vector W . This can not only
improve the performance asymptotically, but also substitute
the merge while loop with a simple for loop, which enables
additional optimization potentially customized for for loops.

The workspace transformation is applied on the Index
Tree dialect. Compared to the kernel fusion optimization in
COMET [18], which removes redundant computation and
performs memory optimization for intermediate tensors cre-
ated by the fusion of multiple operations, the workspace
transformation increases the performance of a single operation.
The workspace transformation proposed in this work and the
kernel fusion [18] can potentially be composed together to
result in overall higher performance. We leave this evaluation
as future work.

2) Two-Phase Computation: One of the challenges of
sparse computation comes from the unknown size and dis-
tribution of the output tensor. First, the number of nonzero
elements in the output tensor is unknown before computation,
which makes memory management very difficult. A general
method is to allocate a very large chunk of memory to avoid
the case where the output size exceeds the allocation, which
results in redundant memory usage. Second, it is hard to
know beforehand how nonzero elements are distributed among
different rows (in case of row-major storage) in the output
tensor. To update the output tensor in parallel, it is common
to use a lock on the critical data structure, which results in
high synchronization overhead.

To determine the needed size and real distribution of the
output tensor, this work generates the code with two phases
for sparse computation. The first phase is called the symbolic
phase. It follows the same procedure of the given sparse
computation (e.g., SpGEMM) in a “symbolic” way that it
does not execute the computation, but only records the nonzero
distribution of the output. After that, the symbolic phase can
also determine the true number of nonzero elements in the
output tensor and then allocate the sparse data structure with
only the needed memory size. The second phase is called the
numeric phase. It performs the real “numeric” computation
with the prior knowledge from the symbolic phase. For some
components of the sparse data structure (e.g., the index array in
CSR), the output can be placed directly at the correct location
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Workspace

𝐶. 𝑑𝑎𝑡𝑎

𝐶. 𝑟𝑜𝑤𝑝𝑡𝑟[𝑖] from 
symbolic phase

Thread 𝑡
𝐴[𝑖, : ]

Fig. 3: An example of parallel numeric phase. After the
symbolic phase, thread t knows where to insert the result into
the data array using a private workspace.

that is provided by the symbolic phase. Therefore, the two-
phase computation can minimize memory usage effectively.

3) Automatic Parallelization: Another challenge of sparse
computation is the inefficient parallel execution due to the un-
known distribution of the output nonzero elements. Unlike the
dense matrix computation that can be parallelized by simply
dividing the regular output, the sparse computation generates
irregular sparse output. A naı̈ve parallelization method would
require locks on the critical sparse data structure, which may
result in a high synchronization overhead.

The use of two-phase computation enables efficient par-
allelization without locks. First, the symbolic phase can be
naturally parallelized among one dimension of the tensor. It
does not have update conflicts because the symbolic phase
does not perform numeric computations but only records the
output distribution. Second, the numeric phase can also be
parallelized according to the locations provided by the sym-
bolic phase as shown in Figure 3. Different parts of nonzero
elements can be updated simultaneously without conflicts.

Moreover, the codegen can generate a private workspace for
each worker during parallel execution. In this way, multiple
workers will not have writing conflicts with each other, and a
worker can reuse their private workspace without unnecessary
reallocation.

IV. EXTENDED LINEAR ALGEBRA GRAPH PRIMITIVES

As described in Section II, traditional linear algebra primi-
tives are not sufficient to implement efficient graph algorithms.
For this reason, the GraphBLAS standard introduces extended
linear algebra operators that leverage the nature of graph data
structure to reduce computation and increase performance.
This section describes the design and implementation of such
extended primitives in our work.

A. Semiring

Semiring is an algebraic structure similar to a ring, but
without the requirement that each element must have an
additive inverse operator. Semiring operators combine a pair
of linear algebra operations into a singular one. For example,
the DSL expression

C[i, k] = A[i, j] @(+, ∗) B[j, k] (1)

where A and B are the input matrices and C is the output
matrix, contains the semiring operator @(·, ·). The semiring



1 def main() {
2 #IndexLabel Definition
3 IndexLabel [a] = [?];
4 IndexLabel [b] = [?]; #IndexLabel [b] = [0:?];
5

6 #Tensor Definition
7 Tensor<int> A([a,b], {CSR}); # Matrix in CSR format
8 Tensor<int> B([b], Dense); # Dense vector
9 Tensor<int> X([b], Dense);

10 Tensor<int> M([b], Dense); # Mask vector
11

12

13 #Tensor Readfile Operation
14 A[a,b] = comet_read(0, 1); # read CSR matrix (the 2nd

arg dictates how to read the matrix, e.g., lower
or upper triangle)

15

16 #Tensor Fill Operation
17 B[a] = 1.0;
18

19 var N = 100; # define a scalar
20

21 for index in range (N):
22 X[b]<M> = B[a] @(any, pair) A[a,b]; # semiring

operator @
23 M[b] = X[b];
24 end
25

26 print(X);
27 }

Listing 3: An example program in our DSL that demonstrates
the use of some programming constructs to support graph
algorithms.

operator takes as input the pair of operations that needs to
be combined. In this example, @(+, ∗) combines addition
and multiplication, thus it is equivalent to the standard matrix
multiplication operation. Listing 3 demonstrates the use of the
any-pair semiring between a dense vector and a sparse
matrix (Line 22), where the first operator returns true if both
the elements in the two input vectors are non-zero (paired);
the second operator returns true if any pair was found in
the output of the first operator. Our compiler also supports
plus-times, min-first, any-pair, and plus-pair.

The compiler lowers the semiring operator @(·, ·) down to
the tensor algebra dialect (Line 7 in Listing 1). Since semiring
may contain different operations, the specific mapping of
semiring to TA operators depends on the particular semiring
used. For example, @(+, ∗) maps to ta.mul, while @( , ∗)
maps to ta.elews_mul. Additionally, our compiler extends
the semantics of the tensor algebra dialect operators to include
the semiring type and the pair of operations required. Listing 1
shows how the ta.mul operator in the tensor algebra dialect
is extended to represent semiring type plus_times (note the
semiring attribute). In the next step, the compiler lowers the
tensor algebra IR to index tree IR, where we perform most
code optimizations and transformations for sparse computa-
tions. Listing 2 shows the result of this lowering step for the
plus_times semiring described in Listing 1. Finally, the
compiler lowers the index tree IR to the SCF IR and then to
LLVM IR and machine code for execution.

y

x

masking

x

(b) x<y> = x

masking

(a) A<B> = A

B

A

A

Fig. 4: An illustrative example of the masking-based assign-
ment operation.

B. Masking

In the GraphBLAS standard, masking is a technique to se-
lectively apply operations to certain elements of input matrices
or tensors. In our DSL, masking is represented by the operator
⟨·⟩, which takes as input a matrix that represents the mask and
has identical dimensions of the matrix to which masking is
applied (hence the dimensions of the mask matrix are omitted).
For example:

C[i, k]⟨M⟩ = A[i, j] ∗B[j, k] (2)

performs a matrix-matrix multiplication between the inputs
A and B. In this expression, the masking operator applied
to C, C[i, k]⟨M⟩, limits the scope of scalar operations to
be performed and which elements of C need to be updated.
The mask matrix M is a binary matrix in which mij = 1
iff element cij needs to be updated with the result of the
computation. Figure 4(a) and 4(b) illustrate how masking
works when applied to a sparse matrix and a sparse vector,
respectively. In the Figures, A and x are the original structures,
while B and y are the masks.

Our code generation algorithm for masking operation can
be classified into two classes, depending on the sparsity
structure of the masking matrix: push-based masking and pull-
based masking [21]. As an example, let us consider the case
C<M> = A ∗B (spGEMM). The push-based masking algo-
rithm is driven by the input matrices. The algorithm traverses
matrix A by rows and “pushes” the non-zero elements into
the corresponding rows of matrix B. First, by analyzing the
nonzero elements in a row of A, the algorithm identifies the
specific entries in B that contribute to the output C. Next,
the compiler performs a linear combination between those
elements from the row of A and corresponding rows of B.
Finally, the row of A selects the row of M with the same
row index, reducing the number of output elements to be
computed. In contrast, the pull-based masking algorithm is
driven by the matrix mask. In this case, the algorithm first
traverses every non-zero element of the mask M and “pulls”
the corresponding row from matrix A and the column from
matrix B. First, by analyzing a non-zero element in M , the
algorithm determines which row of A and which column of



Algorithm 1: TC algorithms in linear algebra.
Input: Graph, A, represented as an adjacency matrix. U , upper

triangular part of A; L, lower triangular part of A.
Output: ntri, a scalar to store the resulting triangle count.

1 Function Burkhardt(A, ntri):
2 ntri=sum ((A * A) .* A) / 6 ; // Burkhardt

3 Function Cohen(A, ntri):
4 ntri=sum ((L * U) .* A) / 2 ; // Cohen

5 Function SandiaLL(A, ntri):
6 ntri=sum ((L * L) .* L); // SandiaLL

7 Function SandiaUU(A, ntri):
8 ntri=sum ((U * U) .* U); // SandiaUU

B should be pulled out. Second, the algorithm does a sparse
dot product between these selected vectors.

While the goal of both push-based masking and pull-based
masking algorithms is to eliminate unnecessary computations,
the pull-based masking approach is preferred when the matrix
mask M has a very low density, as it only examines the
elements in the input matrices determined by the mask. How-
ever, in this case, the input B needs to be stored in column-
major storage such as CSC when performing a sparse matrix-
sparse matrix operation. In contrast, the push-based masking
approach is more general and allows B to be stored in a row-
major format, such as CSR. Thus, this approach is preferred
when the matrix mask M has a relatively high density. In
general, the best approach depends on the sparsity level of the
mask M : the compiler is designed to favor the approach driven
by the most sparse matrix to eliminate as much unnecessary
computation as possible.

Note that, in both approaches, there is an additional cost of
accessing the mask matrix M and determining which elements
pertain to the computation. However, the savings introduced
by eliminating unnecessary computations greatly outweigh this
additional cost, as shown in the next Section V.

V. EVALUATION

In this section, we present the performance of automati-
cally generated code for some of the sparse linear-algebra
kernels and the graph algorithms. We compare our perfor-
mance against LAGraph [6] which contains an assortment of
graph algorithms implemented using linear algebra. LAGraph
employs the SuiteSparse:GraphBLAS library for sparse linear
algebra kernels.

A. Methodology and Benchmarks

To show the performance benefit of our work, we evaluate
two sets of benchmarks: 1) simple sparse kernels commonly
used in graph algorithm which consists of sparse matrix -
sparse matrix multiplication (SpGEMM) and sparse matrix-
sparse matrix elementwise multiplication operations, 2) two
representative graph algorithms TC and BFS.

Triangle Counting (TC) algorithm counts the number of
triangles given an input undirected graph G. This problem
was also part of the GraphChallenge competition [22]. A
triangle is defined to be a set of three mutually adjacent

Algorithm 2: BFS expressed in linear algebra.
Input: Graph, A, represented as an adjacency matrix; f , the frontier

vector. s, the source vertex; n, the number of vertices
Output: l, a vector of visited vertices’ level.

1 Function BFS(A, s, n, l):
2 f(s) = True ; // Initialize s in f
3 for level = 0 to n− 1 ; // level of the graph
4 do
5 l⟨f⟩ = level ; // Update the output l
6 f⟨l̄⟩ = f * A ; // compute with masking
7 if f is empty then
8 break ; // earlier termination

vertices in a graph. Generally, three vertices i, j and k form a
triangle if edges (i, j), (j, k) and (k, i) are present in the graph.
The naive way to count the number of triangles in a graph
represented by adjacency matrix A is to perform the following
operation: A3 and take a trace of the resulting matrix. The
final answer is obtained by dividing the obtained scalar by
6 to account for already counted triangles. The naive way is
extremely computationally expensive since A3 is most likely
to become dense. There are various other linear algebra-based
algorithms that propose better implementations as compared to
the naive approach. For instance, element-wise multiplication
(represented as .∗) can be used instead of the second matrix
multiplication operation in the naive approach, i.e., (A2). ∗A.
This is followed by performing a reduction operation across
the matrix to obtain the final triangle count. The algorithm
with element-wise operation is similar to performing the
matrix multiplication with A as a mask. In this way, the
calculations in A2 that are subsequently masked out by the
element-wise operation are not performed in the first place.
Multiple algorithms for triangle counting exist [23] – the linear
algebra formulation of the tested TC algorithms is described
in Algorithm 1. These formulations include two linear algebra
operations, a matrix-matrix multiplication, and an element-
wise multiplication, followed by a reduction. As discussed
earlier, the element-wise operation in each expression can be
replaced by a masking operation. Finally, some algorithms
utilize the lower and upper triangular parts of the adjacency
matrix to limit the computational complexity of the problem.

Breadth-First Search (BFS) algorithm traverses nodes of the
graph structure to understand a particular property, such as
the level of reachability starting from a source vertex. The
search starts from the source vertex and reaches all vertices at
the current depth level before moving to vertices at the next
level. We describe the linear algebra formulation of BFS in
Algorithm 2. There are mainly two linear algebra operations:
a masking operation that assigns levels to the level vector
under the mask of f , the frontier vector, including visited
vertices at the current level; and a sparse vector-sparse matrix
multiplication operation, where the visited vertices are updated
across iterations, and a masking operation, which concentrates
the search on unvisited vertices.

We perform all experiments on an Intel Xeon Skylake
Gold 6126 processor with 192 GB DRAM memory. We



Fig. 5: Performance of semiring in our compiler as normalized
to SuiteSparse:GraphBLAS when the output matrix is in a
jumbled state.

use llvm-13 with optimization level −O3 for compiling
the LAGraph and SuiteSparse:GraphBLAS (version 7.3.2)
packages. The code generated by our compiler is lowered to
LLVM-IR using MLIR. The mlir-cpu-runner utility is
used to run the LLVM-IR code on the CPU. The generated
LLVM-IR code is further optimized using LLVM level −O3
optimizations. This includes the ability of the LLVM backend
to apply vectorizations when possible. That said, we do not
fully explore the opportunity of MLIR to generate vectorized
code using the vector dialect and this is part of future work.

The sparse inputs used for this paper are from SuiteSparse,
and their characteristics are listed in Table I. The inputs
rma10 and scircuit are not used in the triangle counting
evaluation because they are not symmetric. All the sparse
inputs are stored in the CSR format. The output of this work
is also produced in the CSR format. All results reported are
the average of 10 runs. Unless otherwise noted, the evaluation
uses sequential execution. Results for parallel execution are
reported in Figure 10.

B. Performance Evaluation

We perform a detailed performance evaluation of the gener-
ated code by our compiler against the SuiteSparse:GraphBLAS
library for common kernels utilized in most graph algorithms.
We also evaluate various triangle counting and breadth-first

TABLE I: Sparse input matrices from SuiteSparse, ordered by
density from high to low.

Name Size NNZ count Density Domain
bcsstk17 10,9742 428,650 3.56 × 10−3 Structural Problem

pdb1HYS 36,4172 4,344,765 3.28 × 10−3 Weighted Graph
rma10 46,8352 2,329,092 1.06 × 10−3 CFD Problem
cant 62,4512 4,007,383 1.03 × 10−3 2D/3D Problem

consph 83,3342 6,010,480 8.65 × 10−4 2D/3D Problem
shipsec1 140,8742 3,568,176 1.80 × 10−4 Structural Problem

cop20k A 121,1922 2,624,331 1.79 × 10−4 2D/3D Problem
scircuit 170,9982 958,936 3.28 × 10−5 Circuit Problem
Orkut 3,072,4412 234,370,166 2.48 × 10−5 Social Network

LiveJournal 3,997,9622 69,362,378 4.34 × 10−6 Social Network

Fig. 6: Performance of semiring in our compiler as normalized
to SuiteSparse:GraphBLAS when the output matrix is in an
unjumbled state. (Note different y axis scale with Figure 5)

search algorithms against their corresponding implementations
in the LAGraph library. A detailed breakdown of performance
gains obtained by our optimizations is included.
Semiring Performance. Several graph algorithms can be rep-
resented using semirings instead of traditional linear algebra
operator to improve performance efficiency. To evaluate the
performance of the semirings operation, we make a compari-
son between our compiler and SuiteSparse:GraphBLAS library
for combination of SpGEMM with multiple operation pairs
(semirings) and different sparse inputs. In this evaluation, the
workspace transformation is applied to improve data locality
and avoid irregular access to sparse data structures.

Figure 5 shows the performance of semiring in the compiler
when the output is in the jumbled state. If the matrix is
returned as jumbled, the column indices in any given row
may appear out of order [8]. The sort is left pending. Some
graph algorithms can tolerate jumbled matrices on input, so
it is faster to generate jumbled output to be given as input
to the subsequent operation. As shown in Figure 5, our
work performs better than SuiteSparse:GraphBLAS for all
the sparse inputs, up to 3.7× speedup. The plus-times
semiring is another representation of sparse matrix-sparse
matrix multiplication. The plus-pair semiring replaces
the multiplication operation with pair operation in sparse
matrix operation contributing to improved performance since
the pair operation is a trivial operation as we operate on
non-zero elements.

Figure 6 shows the performance of the same set of bench-
marks while the output is in a unjumbled state in which the
indices always appear in ascending order. The performance of
sparse operations depends on the performance of the sorting
algorithm if the resulting matrix must have indices sorted
in each row. Our compiler currently uses the standard C++
quicksort algorithm (std::qsort) as compared to the advanced
sorting algorithm implemented in SuiteSparse:GraphBLAS.
Hence, the performance of the compiler significantly drops
(1.75×) as compared to the jumbled case in Figure 5. We
plan to improve the sorting algorithm in future work. The rest
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Fig. 8: Performance of the four Triangle Counting algorithms
with masking as compared to LAGraph.

of the paper represents the result when the output matrix is in
an unjumbled state.
Overall Performance. First, we evaluate the performance of
sparse matrix-sparse matrix operation with plus-times semiring
(i.e., SpGEMM) using the input matrix as a mask inside
both our compiler and SuiteSparse:GraphBLAS when all the
optimizations are enabled in the compiler.

Figure 7 illustrates the speedup obtained by code generated
by the compiler as compared to library-based realization of
the same SpGEMM operations. The figure shows that the
our performance is better than SuiteSparse:GraphBLAS across
various inputs, and the compiler obtains up to 2.19× speedup,
with 1.48× geometric mean speedup. Masking optimization
avoids unneeded computations based on the requirements
of the graph algorithms. Specifically, masking intervenes in
the basic sparse vector-sparse matrix multiplication that is
performed for each row of the other input matrix. At each
iteration, the corresponding sparse row from the mask matrix
is converted to an intermediate dense vector to support random
O(1) access to the elements in the mask. This accelerates the
skipping of computations that do not need to be performed.
The workspace transformation also provide some additional
speedup as compared to SuiteSparse:GraphBLAS, which is
evaluated further in this Section.

Next, we evaluate the performance of four different Trian-
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Fig. 9: Performance of the BFS algorithm with masking as
compared to LAGraph.
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Fig. 10: Parallel performance of the four Triangle Counting
algorithms with masking as compared to LAGraph.

gle Counting algorithms implemented by our compiler. The
performance is compared against LAGraph implementations
of the same algorithms. The four algorithms are Burkhardt,
Cohen, SandiaLL, and SandiaUU, whose linear algebra ex-
pressions are shown in Algorithm 1. In our experiments,
we evaluate the implementation of these algorithms with
the plus-pair semiring instead of SpGEMM operation
(i.e., plus-times semiring) and with masking instead of
the element-wise multiplication operation. These experiments
demonstrate the benefit of all optimizations proposed in this
paper. The cost to determine the strict lower and upper
triangular parts of the input matrix is not included in the
performance evaluations. Figure 8 shows the performance
comparison of all four Triangle Counting algorithms imple-
mented within our compiler and LAGraph with masking. It
shows that our work can achieve up to 2.52× speedup, and
1.91×, 1.54×, 1.65×, and 1.68× geometric mean speedup
over LAGraph for Burkhardt, Cohen, SandiaLL, and Sandi-
aUU algorithms across all input matrices, respectively. The
performance breakdown of various optimizations proposed
inside the compiler is discussed later in this Section. In the
results in Figure 8, when the input matrices have a relatively
high density (e.g., bcsstk17), we do observe diminishing
returns for algorithms that use sparser matrices such as lower
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and upper triangular. We attribute this to our masking imple-
mentation that is based on the push method [21]. The push-
based masking is more suitable for masks with higher density,
whereas, pull-based masking is suitable for sparser masks.
We plan to investigate our design choices in future work.
Moreover, we expect to have better performance as we use
an advanced sorting algorithm for unjumbled output matrices.

Next, Figure 9 illustrates the performance comparison of
BFS implementation between our work and LAGraph. It shows
that our work can achieve up to 9.05× speedup over LAGraph
and geometric mean 2.57× speedup for all input matrices.
The main speedup comes from our use of the workspace
transformation. The major computation in the BFS level
algorithm involves finding the next frontier in each iteration
(see algorithm 2). It is achieved by performing a sparse vector-
matrix multiplication with masking. Workspace transformation
can avoid the expensive insertion into the middle of sparse data
structures and performs asymptotically faster.
Parallel Performance. Figure 10 shows our parallel perfor-
mance of four Triangle Counting algorithm with masking com-
pared with LAGraph. All experiments use 24 threads. It shows
that our work can achieve up to 4.63× speedup over LAGraph
among all used input matrices, besides up to 2.02× speedup
among the two large inputs Orkut and LiveJournal.
Our work also achieves 2.40×, 1.41×, 1.36×, and 1.48×
geometric mean speedup over LAGraph for Burkhardt, Cohen,
SandiaLL, and SandiaUU algorithms among all input matrices,
respectively. The results demonstrate that the compiler can
achieve high-performance parallelization, thanks to the two-
phase computation.
Performance Benefit Breakdown. This section discusses the
performance gains obtained by each proposed optimization, in-
cluding the workspace transformation, semiring, and masking.

The base case is implemented as a kernel that consists
of the SpGEMM operations followed by the element-wise
multiplication operation. This base version does not include
any of the optimizations proposed in this paper. Then, we
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Fig. 12: Performance breakdown of triangle counting algo-
rithm SandiaLL implemented by our compiler.

evaluate the performance gain of each of the optimizations.
First, we apply the workspace transformation to improve data
locality for sparse linear algebra operations. The masking
optimization is then applied to eliminate the element-wise mul-
tiplication operation that succeeds the SpGEMM operation.
The masking optimization improves the performance by skip-
ping computations that are not needed since they will result
in multiplication by zero in the element-wise multiplication
operation. Figure 11 shows the performance progression as
incrementally the workspace and masking optimizations are
applied to the base case. The workspace transformation has
20.60× geometric mean speedup over the base case across all
inputs. The masking operation can be seen to add another
1.86× speedup. It can be clearly seen that the proposed
optimizations are important and lead to substantial gains
compared to the base case, e.g., in most cases over 90% of the
speedup is due to the workspace and masking optimizations.
We highlight that the masking optimization is also important
for low memory usage since we had difficulty running the
relatively larger LiveJournal and Orkut inputs on our system.

We also profile the performance breakdown of the proposed
optimizations for various triangle counting algorithms. Fig-
ure 12 shows the results of SandiaLL only for brevity. Other
algorithms show the same trend. The base cases for these
algorithms are shown in Algorithm 1, whereby a SpGEMM is
followed by an element-wise multiplication operation, includ-
ing reduction. As done earlier, the SpGEMM and element-wise
multiplication operations can have the workspace transforma-
tion and masking optimizations applied incrementally. An ad-
ditional performance advantage can be gained by replacing the
SpGEMM operation with a semiring of plus-pair. Specifi-
cally, replacing the multiplication operation in SpGEMM with
a pair operation tends to bring in a performance advantage
of around 5% across all inputs for four triangle counting
algorithms. Note that semiring operations are essential to
support state-of-the-art graph algorithms [6], [24], [25].

Although the performance advantage is dependent on the
sparsity of the input matrices, the proposed optimizations can
be safely and effectively applied to achieve some benefit across
multiple application domains that utilize sparse computation.



VI. RELATED WORK

Graph Libraries. There are numerous graph libraries,
such as [6], [9]–[11], [24]–[30], that aim to provide high-
performance implementations of graph kernels using differ-
ent sequential and parallel algorithms. LAGraph [6] is a
library that contains representative graph algorithms and is
based on sparse linear algebra operations from the SuiteS-
parse:GraphBLAS package [24]. On the other hand, NW-
Graph [10] is a high-performance header-only graph library
that leverages C++20 features. However, different libraries
have their own approach to optimization and are tied to specific
programming models. In contrast, the compiler potentially
offers a unified solution for sequential and parallel code gener-
ation through the MLIR back-end while being complementary
to existing library-based approaches.
Compilers for Sparse Computations. There are several
domain-specific compilers designed for generating code of
sparse operations in graph algorithms, including Green-
Marl [31], GraphIt [32], and TACO [33]. These compilers,
such as Green-Marl and TACO, perform source-to-source
translation, where TACO translates its DSL operations to
C++ using computational templates. However, TACO does not
support parallel sparse computation (e.g., parallel SpGEMM),
and its optimizations mainly focus on sequential code. In
contrast, the compiler in this work proposes optimizations
including two-phase computation and parallelization for sparse
kernels.

Recently, MLIR infrastructure added support for sparse ten-
sors through the sparse-tensor dialect [19]. COMET precedes
this support and does not utilize the sparse-tensor dialect.
As a result of MLIR’s support for sparse tensors, we can
expect more MLIR-based compilers to include support for
graph algorithms in the future. One such example is the
mlir-graphBLAS [34] effort that plans to lower to linalg
dialect. Previously, it used to generate code at the loop level
(SCF dialect) in a similar manner to this work albeit without
optimizations such as workspace transforms.

VII. CONCLUSIONS

We present a compiler framework to simplify the devel-
opment of graph algorithms and generate efficient code for
target computing architectures. Built on top of COMET, this
compiler consists of a DSL for developing graph algorithms
using algebraic operations, optimized graph operators (such
as semiring and masking), and various optimizations and code
transformations (such as workspace transformation, two-phase
computation, and automatic parallelization). We demonstrate
the performance benefits of code generation through our
compiler using common graph algorithms and compare it to a
state-of-the-art library-based approach LAGraph. Our results
show that compared to LAGraph, our compiler can achieve up
to 3.7× speedup in semiring operations, 2.19× speedup in an
important sparse computational kernel, and 9.05× speedup in
graph processing algorithms.
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APPENDIX A
ARTIFACT EVALUATION

A. Getting Started Guide

1) Availability: This artifact is available on

• Docker (https://hub.docker.com/r/cometpnnl/comet/tags),
• Zenodo (https://doi.org/10.5281/zenodo.8275066), and
• Github (https://github.com/pnnl/COMET/tree/pact23-ae).

If you got the artifact from Github, please check out the
pact23-ae branch under the repository root by running

$ git checkout pact23-ae

2) Hardware Environment: This artifact is supposed to run
on CPU machines with at least 60 GB of memory and 10 GB
of free disk space.

3) Software Environment: If using Docker, please refer to
Section A-A4 to prepare the container.

If not using Docker, this artifact requires:

• CMake for building the program (≥ 3.25).
• Modern C++ compiler (LLVM getting started).
• Bash or Zsh for shell scripts.
• Python3 (≥ 3.9) for Python scripts.
• Docker, preferred.

4) Prepare Docker: Assuming Docker is installed and
running, the following command can be issued to retrieve the
Docker container from Docker Hub as follows.

$ docker pull cometpnnl/comet:pact23

Approximately 1 GB of disk space will be required to down-
load the image. The experiments will require an additional 6
GB of disk space due to the download of the SuiteSparse
dataset.

The following command can be issued to run the down-
loaded image:

$ docker run -it cometpnnl/comet:pact23 /bin/bash

The Docker container contains all the necessary executables
(COMET, LLVM) and libraries to run the experiments, as
noted in sections A-B and A-C. The Dockerfile used to build
the image is in the Github repository.

Once the docker container is running, the executable artifact
is in the directory AE/.

5) Build From Sources: If using a Docker image is not
preferred, please build from sources referring to README.md.
Usually, the most time-consuming part is compiling LLVM,
which could take a couple of hours depending on the machine.

Please also build LAGraph under the AE/LAGraph, which
requires the GraphBLAS library built in advance. In general,
LAGraph can be built by issuing the following commands:

$ cd AE/LAGraph/build/
$ GRAPHBLAS_ROOT=/graphblas/build cmake ..
$ make

6) Prepare Input Matrices and Environment: Under AE/,
please run
$ bash scripts/sh0.install_libraries.sh
$ bash scripts/sh1.get_matrices.sh

These scripts will install Python3 dependencies and download
all input matrices (about 6 GB) into AE/data/.

B. Quick Run
A quick script can run the masked SpGEMM benchmark of

this work and LAGraph using the first 8 matrices in the paper.
If you are in the Docker container, please run under AE/
$ bash benchmarks/run0.quick_run.sh

If you build the artifact from sources, please run
$ bash benchmarks/run0.quick_run.sh test

The script usually takes 10 minutes to finish and
will generate quick_run.masked_spgemm.png in
AE/results/. The figure will show the speedup of our
compiler-generated code over LAGraph. As there are many
ways to access the figure, we find it convenient to use
Visual Studio Code with Docker extension to download files
from running containers. Additionally, one can also use the
docker cp command to copy the figure from the container
to the host by
$ docker cp <container-id>:</source> </target>

C. Get Main Results
Similar to the quick run, there are other scripts to get the

main results of the paper.
For full results of Masked SpGEMM with 10 matrices,

please run (under AE/, use test if built from sources)
$ bash benchmarks/run1.masked_spgemm.sh [test]

For results of Triangle Counting, please run
$ bash benchmarks/run2.triangle_counting.sh [test]

For results of Breadth-First Search, please run
$ bash benchmarks/run3.bfs.sh [test]

They will generate figures corresponding to Figure 7, Fig-
ure 8, and Figure 9, respectively. They show the speedup of
our compiler over LAGraph with different inputs.

https://hub.docker.com/r/cometpnnl/comet/tags
https://doi.org/10.5281/zenodo.8275066
https://github.com/pnnl/COMET/tree/pact23-ae
https://llvm.org/docs/GettingStarted.html#host-c-toolchain-both-compiler-and-standard-library
https://www.docker.com/
https://github.com/DrTimothyAldenDavis/GraphBLAS
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