
9 SUPPLEMENTARY MATERIALS
9.1 Complete Definition of Hierarchical Hub

Labeling (HHL) and Canonical Hierarchical
Hub Labeling (CHHL)

An important direction to make 2-hop labeling feasible and scalable

for large graph is to restrict the choices of labeling (by imposing

some special properties on what can be added into the labels).

Definition 1. (Hierarchical Hub Labeling) Given two distinct
vertices u and v , we say u ⪰ v if u ∈ L(v) (u is a hub of v). A hub
(2-hop) labeling is hierarchical if ⪰ forms a partial order.

In fact, any partial order can be extended to a total order (the

order-extension principle) and for a set of verticesV , the total order

is defined as a bijection π : V → 1, · · · , |V | (π (v) is the rank of v).
Given this, we can say that a label is hierarchical if there is a total

order π which satisfies: u ∈ L(v) then π (u) < π (v) (u ranks higher

than v).

Definition 2. (Canonical Hierarchical Hub Labeling) Let the
shortest path vertex set Puv consist of all vertices on shortest paths
between u and v (including u and v). Given a total order π on V ,
its canonical hub labeling is defined as follows: u ∈ L(v) if u has
the highest order in Puv , i.e., no other vertex w in Puv such that
π (w) < π (u).

An important implication of canonical hierarchical hub labeling

is that it produces the minimal hierarchical hub labeling for a given
order [3]. Thus, the optimal HHL problem can be transformed into

two sub-problems: 1) finding the optimal order that minimizes the

label size; 2) computing the canonical HHL with respect to a given

vertex order.

A main breakthrough enabling efficient 2-hop labeling is the

discovery of a simple, yet elegant algorithm called pruned land-

mark labeling (PLL) [2]. It computes the canonical HHL (the second

subproblem) for a given vertex order efficiently. Independently, es-

sentially the same style algorithm was discovered for 2-hop reach-

ability labeling, and is called distribution labeling [34]. In the past

few years, a number of studies [16, 40] have further validated and

confirmed the efficiency and effectiveness of PLL style algorithms

for distance labeling.

Theoretically, the optimal hierarchical hub labeling (HHL) as well

as the original 2-hop labeling have recently been proved to be NP-

hard [3], which implies that the optimal order sub-problem (the first

sub-problem listed above) is NP-hard as well. A few heuristics, such

as the ranking by degree and betweenness, have been developed for

addressing this sub-problem [40]. The second sub-problem (labeling

generation) typically dominates the overall labeling computation

and is thus the focus of this study.

9.2 Proof of VC-PLL Theoretical Properties
Theorem 3. VC-PLL (Algorithm 3) produces the canonical hierar-

chical hub labeling given a vertex order π .

Proof Sketch: Recall the shortest path vertex set Puv consists

of all vertices on shortest paths between u and v (including u and

v). Then, we need to prove u ∈ L(v) iff u has the highest order in
Puv (Definition 2).

First (→), we can see that if u ∈ L(v), then we cannot find

another vertex w with rank higher than u, such that d(u,v) ≥
d(u,w) + d(w,v). Thus, u must have highest order in Puv . If not,
assume we have another vertexw , u that has the highest rank in

Puv . Then, based on our algorithm,w will be the highest ranked in

Pwu and Pwv . Thus,w can always reach u and v before u reaches

v (Figure 10) and it is in Lu and Lv when u reaches v .

a

u

w

v
Figure 10:

Second (←), assuming u has the highest or-

der Puv , then, based on the same argument, it

can definitely go through a shortest path from

u tov using Algorithm 3 and if it reachesv , no
other vertices in Lv (and Lu) can prune it. 2

The following corollary can be immediately

obtained.

Corollary 1. In VC-PLL, when a distance
label (u,d(u,v)) is added into δL(v), d(u,v) is
the exact shortest path distance between u and
v , and u has the highest rank in Puv . Further, at
any time L(v) ⊆ L(v), where L(v) is the final complete label of v .

9.3 Detailed Explanation of VC-PLL
Limitations

Additional Cost of Distance Label Generation: For a given ver-

tex u, PLL will send it to a vertex v only once. In BFS, PLL will flag

v after one distance label (u,d(u,v)) is passed through (Line 7 in Al-

gorithm 1 is sequentially executed). But VC-PLL can send multiple

(u,d(u,v)) messages to the same v at two consecutive iterations.

Lemma 1. Given vertexu and vertexv , a distance label (u : d(u,v))
may reach v at exactly two possible and consecutive iterations: Let a
be a neighbor of v , and u ∈ L(a) (u is the highest rank vertex in Pua),
then it reaches v at d(u,a) + 1 iteration, which is either: 1) equal to
the shortest path distance between u and v , and u may or may not be
added to L(v); or 2) equal to d(u,v) + 1, i.e., the path from u to a to v
is one step longer than the shortest path between u and v , and u will
be pruned.

Proof Sketch:To see this, we first need to prove that the shortest
path distance d(u,a) is smaller than or equal to d(u,v)+ 1, where a
andv is the direct neighbor of one another. By way of contradiction,

let us assume d(u,a) ≥ d(u,v) + 2. Then, let w be the highest

rank vertex in Pua , then, we can find a path from u to w to v to

a, which is d(u,v) + 1. This suggests d(u,a) ≤ d(u,v) + 1. Next,

we show u indeed can reach v in two consecutive iterations. This

happens when u reach v via a being the shortest path between u
to v : d(u,v) = d(u,a) + 1; but u is not the highest rank one in Puv .
Thus,u is not added to L(v) ind(u,v) iteration. Now, assumeu reach

a′ with d(u,a′) = d(u,v) and u ∈ L(v ′) (added in d(u,v) iteration.
If a′ is the neighbor of v , then u will be sent to v in d(u,v) + 1

iteration as well. 2

In addition, at each of these two iterations, if u has not been or

is not in the label of v , then different neighbors of v may send the

same (u,d(u,v)) messages to v .
Additional Cost of Distance Check:

Lemma 2. The set consisting of all pairs (u,v) for distance checks
is the same in PLL and VC-PLL.

13

Proof Sketch: Let reach(u) be the subset of vertices u reaches.

In PLL, it corresponds to all the (u,d(u,v)) messages added into

the Q (Line 7 in Algorithm 1). In VC-PLL, it corresponds to all the

(u,d(u,v)) messages being sent to vertex v (Line 5 in Algorithm 3).

Thus,

⋃
u ∈V {u} × reach(u) is the set consisting of all pairs (u,v)

for distance check. In PLL and VC-PLL, for a vertex u, it is assigned
to the same subset of vertices (Corollary 1). Also, it will also be sent

to the same set of vertices which do not use u as label. Thus, the

set

⋃
u ∈V {u} × reach(u) is the same for both. 2

However, the number of distance checks in VC-PLL can be higher
than PLL, as a vertex u can be sent to v in two consecutive iterations
in VC-PLL.

The computational cost of distance check

d(u,v) < min

h∈L(u)∩L(v)
{d(u,h) + d(h,v)}

in VC-PLL is also higher than that in PLL. In VC-PLL, the cost is

O(|L(u)|+ |L(v)|), where L(u) and L(v) are (partial) labels ofu andv
at the time of distance check for d(u,v). Assuming L(u) and L(v) are
not sorted, we can first map L(u) into an array or hash-table, and

then check all the vertices in L(v) against the above data structure.
In PLL [2], since we process vertexu one at a time, and when we try

to process u, its label L(u) is already computed. Thus, we can first

map L(u) to an array only once at the beginning of the BFS iteration.
Thus, the cost ofO(|L(u)|) can be practically saved for each distance
check; thus the distance check for PLL is only O(|L(v)|). For VC-
PLL, we cannot do this directly as it is prohibitively expensive to

map every L(u) to an array or hash-table at the same time.

9.4 Complete Computation Cost Comparison
between BVC-PLL and PLL

In the following, we provide an apple-to-apple computational cost

analysis between BVC-PLL and PLL. We will focus on the cost of

generating (sending) distance labels and distance checks.

Cost of Distance Label Generation: Since in BVC-PLL, each ver-

tex u can be sent to v exactly once, together with Lemma 2 (the

same set of u reaches v), we thus observe:

Lemma 3. The time complexity of sending vertex label messages
(u,d(u,v)) along the edges in graph G given an order π , is the same
for PLL and BVC-PLL.

Following Lemma 3, we obtain the following corollary.

Corollary 2. The total number of distance checks (applying
canonical labeling criterion) being invoked in PLL (Line 5 in Algo-
rithm 1) is the same as those being invoked in BVC-PLL (Line 14 in
Algorithm 4).

This is because the number of distance checks is equivalent to the

total number of generated distance label message:

∑
u ∈V |reach(u)|

(following the algorithm logic).

Cost of Distance Check:Now, the cost of the same distance check

on d(u,v): d(u,v) < minh∈L(u)∩L(v) d(u,h) + d(h,v), in PLL and

BVC-PLL, isO(|L(v)|). However, L(v) are different for PLL and BVC-
PLL: In PLL, when u reaches v , L(v) consists of all vertex labels

which have higher rank than u; In BVC-PLL, assuming u in batch

Bi , L(v) consists of all the vertex labels in all the batches before Bi
(those are the same as those in PLL) and the vertices in the current

batch which are within the distance of d(u,v).

Given this, let us focus on only those vertices being added at

batch Bi for L(v), and denote it as L
i (v). Next, we break the distance

check cost on |Li (v)| into two categories: 1) the positive distance
check which will confirm the vertex u and can add it into the

corresponding label of v ; 2) the negative distance check will return

false on the distance check and thus prune the vertex u.

Theorem 5. (Positive Distance Check) The time complexity of all
positive distance checks in BVC-PLL is lower than or equal to that of
PLL.

Proof Sketch: Let us consider any batch Bi . For the positive
cases of distance check d(u,v) here, given a vertex v and u, u will

always be added to the label ofv . For PLL, for a vertexv , let its com-

plete Li (v) consists of u1,u2, · · · ,un ∈ Bi , where n = |L
i (v)| and

π (u1) < π (u2) · · · < π (un). Then the total cost of distance check

with respect to |Li (v)| is simply 0 + 1 + · · · + n − 1 = n(n − 1)/2,
because in PLL, when ui arrives, L

i (v) already consists of partial

labels {u1, · · · ,ui−1}. For BVC-PLL, for a vertex v , we note that
its distance label in Bi is arriving in group according to their dis-

tances. Let д1,д2, · · ·дk be the groups ordered by arriving (as well

as distance), i.e., given any two vertices x ,y ∈ дi , d(x ,v) = d(y,v),
and their distance is smaller than those in дi+1. Note that for any
vertex u ∈ дi , we only utilize Li (v) = д1 ∪ · · · ∪ дi−1 for distance
check (See Lines 11 − 15 in Algorithm 3, Li (v) will be updated until

all the distance checks in a batch дi are done). Let ni = |дi | and

n =
∑k
i=1 ni , making the total cost of distance checks of vertex v

with respect to |Li (v)| in BVC-PLL to be

0 + n1 × n2 + (n1 + n2) × n3 + · · · + (
k−1∑
i=1

ni) × nk

= (n − n1)n1 + (n − (n1 + n2))n2 + · · · + (n −
k−1∑
i=1

nk−1)

= n(n − 1)/2 −
k∑
i=1

ni (ni − 1)/2.2

Figure 11 illustrates the key idea in the proof of Theorem 5.

Assuming 9 vertices a,b, · · · , i in one batch being added into L(v)
in PLL labeling, its total distance check cost is 36 no matter which

order they are received in (visualized as the area under the diagonal

stairs). Now assuming they arrive in three groups as shown in

Figure 11(a), then in BVC-PLL, their total distance check cost is

3 + 3 × 6 = 27, a 25% reduction compared to PLL.

Theorem 5 essentially shows that BVC-PLL is able to save the

intro-group cross-vertex comparison in each batch. Basically, if

vertices arrive at the same time, they have the same distance to

vertex v and cannot prune one another.

To compare the time complexity difference between PLL and

BVC-PLL for the negative distance check, we introduce the fol-

lowing notation: for any vertex x , and one of its vertex label u
(u ∈ Li (x)), we denote < x ,u > to be a subset:

{
x ∈⋃

y∈N (x)

Li (y) \ Li (x) : π (u) < π (v) < π (x),d(x ,u) > d(v,y) + 1
}

Similarly, we define < y,v > for vertex y with its label v , v ∈ Li (y):{
u ∈

⋃
x ∈N (y)

Li (x) \ Li (y) : π (u) < π (v),d(x ,u) > d(v,y) + 1
}

14

ba

c

v
e

d

f

h

g

i

(b) Distance Check Cost Comparisons

La
be

l A
rr

iv
al

a

b

c

d

e

f

g

h

i

G
ro

up
 1

G
ro

up
 2

G
ro

up
 3

(a) Vertex Arrival in Groups

Figure 11: Theorem 5

Theorem 6. (Negative Distance Check) In batch Bi , and on nega-
tive distance check, the time complexity saved by BVC-PLL compared
with PLL is no higher than

O(
∑
x ∈V

∑
u ∈Li (x)

|⟨x ,u⟩| −
∑
y∈V

∑
v ∈Li (y)

|⟨y,v⟩|).

The time complexity saved by PLL compared with BVC-PLL is no
higher than

O(
∑
y∈V

∑
v ∈Li (y)

|⟨y,v⟩| −
∑
x ∈V

∑
u ∈Li (x)

|⟨x ,u⟩|).

Proof Sketch: To quantify the difference of the time complex-

ities between two algorithms, we focus on the cases where one

algorithm can save computational cost when the Li (v) will be dif-
ferent for distance check d(u,v).

For the first case, let us consider vertex x , it has a vertexu ∈ Li (x).
Now, consider any vertexv ∈ Bi reaches vertex x for distance check

and returns negative result. If v can reach x , it must be a label of

neighbor y of x , i.e., v ∈ Li (y),y ∈ N (x), and v < Li (x) (false
distance check). When v reaches x , it has also lower rank than

u but higher than x : π (u) < π (v) < π (x). Given this, for PLL, u
is already in L(x); however, for BVC-PLL, v can reach x before u
reaches x . Thus, this case will introduce a gain for BVC-PLL; and

such v is characterized and recorded in set ⟨x ,u⟩.
For the second case, let us consider vertex y, and it has a vertex

v ∈ Li (y). Now, consider any vertex u ∈ Bi reaches vertex y for

distance check and returns negative result. If u can reach y, it must

be a label of neighbor x of y, i.e., u ∈ Li (x),x ∈ N (y), and u < Li (y)
(false distance check). When u reaches y, it has also higher rank

than v: π (u) < π (v). Given this, for BVC-PLL, v is already in L(y);
however, for PLL, u can reach x before v is added into L(y). Thus,
this case will introduce a gain for PLL; and such u is characterized

and recorded in set ⟨y,v⟩. 2

Theorem 6 does not provide a clear winner on the cost of nega-

tive check. However, from the symmetric expression of these two

qualities, we conjecture they should be close to one another. In Sec-

tion 6, we will experimentally confirm this. In addition, for negative

distance check, we typically do not need to traverse through the

entire L(v) set. Indeed, the bit-parallel mechanism proposed in the

original PLL paper [2] can help provide almost O(1) pruning. Since
the number of negative checks is the same for PLL and BVC-PLL,

we expect their overall cost will be fairly close to each other.

Putting It Together: Assuming that PLL and BVC-PLL have a

similar cost for negative distance checks, theoretically, BVC-PLL
may have smaller computational cost than that of PLL (due to positive
distance check) since they have the same cost of generating/sending
distance labeling! Furthermore, BVC-PLL is guaranteed to have

a smaller memory access cost for graph topology than PLL as it

groups messages together for each edge access. Overall, it seems

BVC-PLL, an unexpected marriage between PLL and VC compu-

tation, can run faster than the original PLL sequentially and can

also enjoy the scalability of the VC model! Indeed, Section 6 shows

that it can be more than two times faster than PLL (both using one

thread) on real-world graphs.

9.5 Some Implementation Details
Integrated Bitmap and Queue: Much temporary data is gen-

erated for both labeling vertices and active vertices during each

batch processing. These steps require a clearance (e.g., Algorithm 4,

line 22). The cost of this clearance is significant as this operation

occurs for each batch. Traditionally, we often use either a bitmap or

a queue to handle the set of active vertices. However, they become

inefficient or insufficient for supporting BVC-PLL. For a bitmap,

each of its cleanings can take O(|V |) where |V | is the total num-

ber of vertices; for a queue, it cannot support efficient checks for

whether a given vertex is active or not. Given this, we propose a

new traversal control data structure by combining both the bitmap

and the queue. The basic idea is that a bitmap supports fast record-

ing and checking visited vertices and a queue supports fast finding

and clearing the visited vertices. Each time a vertex is processed,

we add it to both the bitmap and the queue. This approach is differ-

ent from the bitmap and queue used in the push and pull strategy

presented in [5, 51, 63] because we use both the bitmap and queue

simultaneously rather than in different stages of processing.

Bit-parallelAdoption: Similar to PLL [2], bit-parallel is also adopted
to accelerate the distance checking in the implementation of BVC-

PLL for unweighted graphs. Its construction is similar to multi-

source BFS traversals and can be easily expressed in the Vertex-

Centric computing model.

15

