
Parallelizing Pruned Landmark Labeling: Dealing with
Dependencies in Graph Algorithms

Ruoming Jin
∗†

Kent State University

Kent, Ohio

rjin1@kent.edu

Zhen Peng
∗

William & Mary

Williamsburg, Virginia

zpeng01@email.wm.edu

Wendell Wu

Kent State University

Kent, Ohio

wwu12@kent.edu

Feodor Dragan

Kent State University

Kent, Ohio

fdragan@kent.edu

Gagan Agrawal

Augusta University

Augusta, Georgia

gagrawal@augusta.edu

Bin Ren

William & Mary

Williamsburg, Virginia

bren@cs.wm.edu

ABSTRACT
To help compute shortest path distances over large graphs effi-

ciently, 2-hop labeling has emerged as a major tool, with Pruned

Landmark Labeling (PPL) as a popular algorithm. This paper demon-

strates the first scalable parallel implementation of the PPL algo-

rithm that produces the same results as the sequential algorithm.

Based on theoretical analysis, we show how computations on each

vertex can be performed in parallel while maintaining correctness,

resulting in the Vertex-Centrix PLL (VC-PLL) algorithm. We also

show a formulation of this algorithm based on linear algebra and

argue why the use of a library based on linear algebra operations

will not produce an efficient implementation. Next, we introduce a

batched VC-PLL (BVC-PLL) algorithm to reduce the computational

inefficiency in VC-PLL. We have carried out a parallel implementa-

tion of this method for modern clusters, combining shared memory

and distributed memory parallelism, that can efficiently execute

on graphs with more than a billion edges. We also demonstrate

how BVC-PLL algorithm can be extended to handle directed graphs

and weighted graphs and how the version for weighted graphs can

benefit from SIMD parallelization.

CCS CONCEPTS
• Theory of computation → Shortest paths; • Mathematics
of computing → Paths and connectivity problems; • Com-
puting methodologies → Parallel algorithms;

KEYWORDS
Parallel Graph Algorithms, Dependency Resolving, Multi-level Par-

allelization

∗
Both authors contributed equally to this research.

†
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICS ’20, June 29-July 2, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7983-0/20/06. . . $15.00

https://doi.org/10.1145/3392717.3392745

ACM Reference Format:
Ruoming Jin, Zhen Peng, Wendell Wu, Feodor Dragan, Gagan Agrawal,

and Bin Ren. 2020. Parallelizing Pruned Landmark Labeling: Dealing with

Dependencies in Graph Algorithms. In 2020 International Conference on
Supercomputing (ICS ’20), June 29-July 2, 2020, Barcelona, Spain. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3392717.3392745

1 INTRODUCTION
Computing the shortest path distance between any two vertices

stands out as one of the most fundamental graph operations, with

applications ranging from transportation systems (for distance re-

lated navigation) [18], social networks/WWW/semantic web (for

recommendations and ranking) [9], to knowledge graphs (for con-

cept detection) [67], among others. This operation also serves as the

basis for more complex graph analytics andmining operations, such

as graph pattern matching [14, 81], distance join processing [62],

and centrality computation [7].

However, computing shortest path distances over scale-free com-

plex networks (e.g., massive social and web graphs) remains a chal-

lenging problem [3, 35, 53]. To help answer shortest path distance

queries on demand, the 2-hop labeling approach [15] has emerged

as an effective tool. Given a graph, it aims to assign each vertex 𝑣 a

label set 𝐿(𝑣), which comprises a list of vertices and their distances

to 𝑣 . Subsequently, given any two vertices 𝑢 and 𝑣 , we only need

to use their respective label information, 𝐿(𝑢) and 𝐿(𝑣), to rapidly

compute their exact distance.

This approach was made scalable by the Pruned Landmark Label-
ing (PLL) method [3]. This labeling approach adopts a fast greedy

process to iteratively consider one vertex at a time (according to

certain vertex order) and potentially assigns it to the label sets

of other vertices, using a distance check criterion. Once the label-
ing process is done, the results are guaranteed to be minimum (or

canonical) with respect to the given vertex order. In the past few

years, a number of studies [2, 17, 44, 57] have further validated and

confirmed the scalability of this approach.

Parallel PLL: The original PLL algorithm is inherently sequential;

i.e., the algorithm operates one vertex at a time to label the entire

graph, and the labeling of a vertex depends on the partial labeling

results from earlier processed vertices. In view of this, on the one

hand, the original PLL [3] suggested to simply parallelize the BFS

labeling of each vertex instead of dealing with inter-vertex labeling

https://doi.org/10.1145/3392717.3392745
https://doi.org/10.1145/3392717.3392745

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Ruoming Jin, et al.

dependency, thus severely limiting parallelism. On the other hand,

two recent attempts [20, 58] allow multiple vertices to be simulta-

neously processed, but do not produce the same compact label as

the original PLL.

This paper studies how PLL can be parallelized in a scalable and

exact fashion. We make the following contributions:
• Linear Algebra Formulation (Section 2):. Motivated by devel-

opments like GraphBLAS(T) [37] and GraphMat [72] that support

graph computations based on a set of linear algebra operators, we

show how the original PLL algorithm can be expressed as a series

of matrix (and vector) computations. However, we also observe

that because of a masking operation, the more efficient imple-

mentation will be the one based on a vertex-centric approach.

• Parallel PLL Algorithm (Section 3): To solve the mismatch

between the inherent sequential/dependence of PLL algorithms

and the goal of allowing independent operations on each vertex,

we present a theoretical result and use it to develop a newVC-PLL

algorithm that utilizes VC to parallelize PLL and is guaranteed

to produce the same labels as original PLL.

• Batched Vertex-Centric PLL (Section 4): To deal with the lim-

itations of VC-PLL, we introduce a batched VC-PLL (BVC-PLL)

algorithm that largely preserves the same vertex computation

function while reducing the costs of message (label) broadcasting

and remote memory access.

• Efficient Parallelization andGeneralization (Section 5):We

combine intra-node (shared memory) and inter-node (distributed

memory) parallelism, resulting in an implementation that can

handle graphs with more than 1 billion edges. In addition, we

show how BVC-PLL can be extended to handle directed graphs

and weighted graphs, and how the extension for weighted graphs

can benefit from SIMD parallelism.

In our experimental study (Section 6), we show that the se-

quential BVC-PLL can run more than 2× faster than the original

PLL (both using one single thread). The parallel BVC-PLL also

demonstrates good scalability and obtains an average speedup of

6.68× over sequential BVC-PLL on a 20-core shared memory ma-

chine and a speedup up to 11.85× on a 16-node distributed cluster

over 1-node version. We also demonstrate that the shared memory

and distributed memory combined BVC-PLL gains good scalability

for large graphs with over 1 billion edges. We finally extend BVC-

PLL to process weighted graph with the help of SIMD parallelism,

achieving up to 1.92× speedup over PLL (both with a single thread),

and achieving up to 15.68× speedup in going from 1 to 20 threads.

2 2-HOP LABELING AND PLL
This section further describes the 2-hop labeling problem and the

PLL algorithm that forms the basis for our work on parallelization.

We also describe how this algorithm can be viewed as a series of

linear algebra operations.

2.1 2-Hop Labeling
The 2-hop labeling algorithm [15], which was pioneered by Co-

hen et al. [15], provides an efficient scheme to answer on-demand

shortest distance queries. It assigns each vertex 𝑢 in an (undirected)

graph a label set 𝐿(𝑢) such that for any two vertices 𝑢 and 𝑣 , their

Algorithm 1 PLL for 𝐺 = (𝑉 , 𝐸) with Order 𝜋

1: for all 𝑢 ∈ 𝑉 {following order 𝜋 from high to low} do
2: Queue𝑄 = {(𝑢, 0) } {BFS process to use 𝑢 for labeling}

3: while𝑄 is not empty do
4: (𝑣,𝑑 (𝑢, 𝑣)) ←𝑄 .pop()

5: if 𝑑 (𝑢, 𝑣) < minℎ∈𝐿 (𝑢)∩𝐿 (𝑣) {𝑑 (𝑢,ℎ) + 𝑑 (ℎ, 𝑣) } then
6: Add (𝑢,𝑑 (𝑢, 𝑣)) into 𝐿 (𝑣)
7: for all 𝑣′ ∈ 𝑣’s neighbor do
8: if 𝑣′ is unvisited by 𝑢 and 𝜋 (𝑢) < 𝜋 (𝑣′) then
9: Add (𝑣′, 𝑑 (𝑢, 𝑣) + 1) to𝑄
10: end if
11: end for
12: end if
13: end while
14: end for

distance can be computed using only their respective label sets. For-

mally, we compute 𝐿(𝑢) and for each ℎ ∈ 𝐿(𝑢), the corresponding
distance from 𝑢, i.e, 𝑑 (ℎ,𝑢). Table 1 illustrates a 2-hop labeling of

the undirected graph 𝐺 that is shown in Figure 1a.

Formally, the shortest path distance query 𝐷𝑖𝑠 (·, ·) between any

two vertices 𝑢 and 𝑣 can be answered as:

𝐷𝑖𝑠 (𝑢, 𝑣) = min

ℎ∈𝐿 (𝑢)∩𝐿 (𝑣)
{𝑑 (𝑢,ℎ) + 𝑑 (ℎ, 𝑣)}

Thus, 2-hop labeling can answer distance queries efficiently by

traversing two lists of vertices, with an operation similar to merge

sort. As an example, in Table 1, the distance between nodes 𝐴

and 𝐵 can be computed as 2 by first identifying that 𝐷 and 𝐼 are

common vertices in their label sets, and subsequently that the

distance through 𝐷 is the shortest (1+1).

Over a decade, numerous efforts [1, 12, 13, 24, 34, 63, 64] largely

failed in making 2-hop labeling practical on large real-world graphs.

The pruned landmark labeling algorithms [3, 36] are considered a

major breakthrough in solving this problem and are the focus of

our work.

2.1.1 Pruned Landmark Labeling (PLL). The main idea of this al-

gorithm is to use a total ordering of all vertices (finding such an

order optimally is NP-hard [75], but heuristics are feasible) for

labeling. Given such a total order 𝜋 of vertices, the pruned land-

mark labeling (PLL) [3] assigns each vertex, based on the order

(𝜋 (𝑣1) < 𝜋 (𝑣2) < · · · < 𝜋 (𝑣𝑛)), to the labels of other vertices in

the graph following a BFS process. Note that when 𝜋 (𝑣𝑖) < 𝜋 (𝑣 𝑗),
we say that 𝑣𝑖 has the higher rank. As PLL assigns the vertex 𝑢 with

the rank 𝜋 (𝑢) as a label to a lower ranked vertex 𝑣 , it needs to check
if 𝑢 is the highest ranked vertex in the shortest paths between 𝑢

and 𝑣 (𝑃𝑢𝑣). This can be done by checking

𝑑 (𝑢, 𝑣) < 𝑑 (𝑣, ℎ) + 𝑑 (ℎ,𝑢), for all ℎ ∈ 𝐿(𝑢) ∩ 𝐿(𝑣).
Intuitively, this is ensuring that the distance between𝑢 and 𝑣 cannot

be recovered by a certain higher ranked vertex. When the condition

above does not hold, 𝑢 will be pruned by 𝑣 (i.e., is not added into

the label of 𝑣 and will not be further expanded from 𝑣) during the

labeling process.

Figure 1 illustrates the processing associatedwith the two highest

ranked vertices (𝐼 and 𝐸) for the graph in Figure 1a. Rank (or order)

of each vertex is explicitly shown following the vertex ID.

Algorithm 1 sketches the labeling process for an undirected

graph. Note that 𝑑 (𝑢, 𝑣) in the algorithm is the distance computed

BVC-PLL ICS ’20, June 29-July 2, 2020, Barcelona, Spain

B:5
A:8

D:2

C:6

F:4
E:3

H:10

G:9

J:11
I:1 L:7K:12

a Original graph with ranks

{(I,1)}

{(I,1)}

{(I,2)}
{(I,2)} {(I,2)}

B:5
A:8

D:2

C:6

F:4
E:3

H:10

G:9

J:11
I:1 L:7K:12

{(I,0)}

{(I,1)}

{(I,1)}

{(I,1)}

{(I,2)} {(I,2)}

{(I,2)}

b 𝐿 after vertex I spreading

{(I,0)}

{(I,1)}

{(I,1)}

{(I,1),
(D,1)}

{(I,1)}
{(I,1),
(D,0)}

{(I,2),(D,1)}

{(I,2)}

{(I,2),(D,1)}

{(I,2)}

{(I,2),(D,2)}

{(I,2)}

B:5
A:8

D:2

C:6

F:4
E:3

H:10

G:9

J:11
I:1 L:7K:12

c 𝐿 after vertex D spreading
Figure 1: 2-Hop Labeling and PLL Example: spreading vertex is marked with red; light shadow vertices have already received the label spread (colored in

red); pruning happens in dark shadow vertices; white vertices are not accessed by the vertex being spread because of pruning.

Table 1: 2-hop labeling for Graph𝐺
Vertex Labels

𝐴 {(𝐴, 0), (𝐷 , 1), (𝐼 , 2)}

𝐵 {(𝐵, 0), (𝐷 , 1), (𝐸, 1), (𝐹 , 2), (𝐼 , 2)}

𝐶 {(𝐶 , 0), (𝐵, 1), (𝐸, 1), (𝐹 , 1), (𝐼 , 2), (𝐷 , 2)}

𝐷 {(𝐷 , 0), (𝐼 , 1)}

𝐸 {(𝐸, 0), (𝐷 , 1), (𝐼 , 1)}

𝐹 {(𝐹 , 0), (𝐼 , 1)}

𝐺 {(𝐺 , 0), (𝐹 , 1), (𝐿, 1), (𝐼 , 2)}

𝐻 {(𝐻 , 0), (𝐴, 1), (𝐼 , 1)}

𝐼 {(𝐼 , 0)}

𝐽 {(𝐽 , 0), (𝐼 , 1), (𝐿, 2)}

𝐾 {(𝐾 , 0), (𝐽 , 1), (𝐿, 1), (𝐹 , 2), (𝐼 , 2)}

𝐿 {(𝐿, 0), (𝐹 , 1), (𝐼 , 2)}

by the BFS process, which may not be the exact distance between

𝑢 and 𝑣 (due to the pruning effect). But the recorded distance in

the label (Line 6) is always exact (since it can travel through all

the shortest paths starting from 𝑢 reaching to 𝑣). It can be proved

that the results are guaranteed to be minimum (or canonical) with
respect to the given vertex order.

2.2 A Linear Algebra View of PLL
It has been well known that a large number of graph algorithms can

be stated as operations on (sparse) matrices [25, 38]. Multiplication

of a sparse matrix with a vector (SpMV) and multiplication of two

sparse matrices (SpGEMM) are the operations most commonly

used. Multiple recent efforts have focused on using the work on

optimizing (and parallelizing) SpMV and SpGEMM operations as

the basis for graph processing [37, 72].

We have examined how PLL can also be viewed as a series of

linear algebra operations. Our examination, however, shows that

PLL requires more than SpMV and SpGEMM and therefore is better

parallelized by taking a vertex-centric view of the computations.

Let 𝐴 be the adjacency matrix for graph 𝐺 , where 𝐴[𝑢, 𝑣] =

𝐷𝑖𝑠 (𝑢, 𝑣). Let 𝐼 be the identity matrix and let 𝐼𝑖 be the 𝑖-th column

of identity matrix 𝐼 .

First, it is well known (see, for example [38]) that the following

equation computes the shortest distances from a given vertex 𝑖 ,

denoted as a vector ®𝑦𝑖 :

®𝑦𝑖 = (𝐼𝑇𝑖 (𝐼 +𝐴 +𝐴
2 + · · · +𝐴𝑑))𝑇 = (𝐼 +𝐴 +𝐴2 + · · · +𝐴𝑑)𝑇 𝐼𝑖

where 𝑑 is the diameter of the graph. We also denote

𝐴∗ = (𝐼 +𝐴 +𝐴2 + · · · +𝐴𝑑)𝑇 .

Note that for any matrix𝑀 ,𝑀𝑖 is the 𝑖-th column of𝑀 (𝑀𝑖 = 𝑀𝐼𝑖).

Now, we represent the original PLL algorithm as a series of linear

algebra operations. Following the order used in the PLL algorithm,

let ®𝑥𝑖 be the vector recording the distance of all vertices to the 𝑖-th

ordered vertex in the distance labeling:

®𝑥𝑖 [𝑗] = 𝑑 (𝑗, 𝑖), 𝑣𝑖 ∈ 𝐿(𝑣 𝑗); ®𝑥𝑖 [𝑗] = +∞, 𝑣𝑖 ∉ 𝐿(𝑣 𝑗).
Let ⊖ be the generalized element-wise masking: ®𝑥 [𝑖] ⊖ ®𝑦 [𝑖] = ∞

if ®𝑥 [𝑖] is larger than or equal to ®𝑦 [𝑖] and ®𝑥 [𝑖] ⊖ ®𝑦 [𝑖] = ®𝑥 [𝑖] if
®𝑥 [𝑖] is smaller than ®𝑦 [𝑖]. Given this, for two column vectors ®𝑥 =

{𝑥1, · · · , 𝑥𝑛}𝑇 and ®𝑦 = {𝑦1, · · · , 𝑦𝑛}𝑇 , ®𝑥 ⊖ ®𝑦 = {𝑥1 ⊖ 𝑦1, · · · , 𝑥𝑛 ⊖
𝑦1}𝑇 . Then the labeling PLL essentially utilizes the following equa-

tion to assign the labeling:

®𝑥1 = 𝐴∗𝐼1
®𝑥2 = 𝐴∗𝐼2 ⊖ (®𝑥1 ®𝑥𝑇

1
)𝐼2

®𝑥3 = 𝐴∗𝐼3 ⊖ (®𝑥1 ®𝑥𝑇
1
+ ®𝑥2 ®𝑥𝑇

2
)𝐼3

· · ·
®𝑥𝑛 = 𝐴∗𝐼𝑛 ⊖ (

∑𝑛−1
𝑖=1 ®𝑥𝑖 ®𝑥𝑇𝑖)𝐼𝑛

Here, ®𝑥𝑖 ®𝑥𝑇𝑖 generates the matrix recording the shortest distance

between any two vertices via vertex 𝑖 . Thus, (®𝑥𝑖 ®𝑥𝑇𝑖)𝐼 𝑗 corresponds
to the shortest distance from any vertex to vertex 𝑗 via vertex 𝑖 .

In Algorithm 1, line 2–13 basically provides an efficient proce-

dure to generate the distance label ®𝑥𝑖 . Especially, Line 5 can be

considered as the on-demand implementation of the generalized

masking operation (without explicitly producing the masking vec-

tor, and testing the condition as needed).

As we can see above, though we have been able to map PLL to

a set of linear algebra operations, the formulation involves more

than SpMV and SpGEMM algorithms. Particularly, the use of lin-

ear algebra libraries will require materialization of the expression

(∑𝑘−1𝑖=1 ®𝑥𝑖 ®𝑥𝑇𝑖)𝐼𝑘 during the𝑘-th step, which can bemuchmore expen-

sive as compared to performing the masking operation (or pruning)

on demand in Line 5 of Algorithm 1. As a result, we examine other

models for parallelizing PLL.

3 PARALLELIZATION OF PLL
This section first gives background on vertex-centric model. It then

states the challenges in parallelizing PLL using this model. We state

an important theoretical result and then proceed to develop an

initial (basic) parallel algorithm for PLL.

3.1 Vertex-Centric (and Other) Models
Graph algorithms have been frequently parallelized by thinking

of independent computations on each vertex. This was the basis

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Ruoming Jin, et al.

Algorithm 2 Vertex-Centric (Scatter-Gather) (G=(V,E))

1: Initialize ActiveVertices ⊆ V

2: while ActiveVertices is not empty do
{Scatter Phase:}

3: for all 𝑎 ∈ ActiveVertices do
4: a.Scatter(a.edges) : {for each edge 𝑒 = (𝑎, 𝑣) of 𝑎, send

message(𝑎, 𝑒, 𝑣) to 𝑣}

5: end for
ActiveVertices← ∅
{Gather Phase:}

6: for all 𝑣 Received Message do
7: v.Gather(𝑣.messages): {vertex compute using receivedmessages

and update its value}

8: ActiveVertices← {𝑣 : v.value is updated}
9: end for
10: end while

for the seminal vertex-centric programming model proposed by

the Pregel paper [48], and many other parallel graph processing

system research efforts [16, 27, 28, 39, 41, 46, 47, 52, 54, 66, 68, 74,

77]. Though other models have been used, including the recent

projects that use (sparse) linear algebra operations (for example,

GraphBLAS(T) [37] and GraphMat [72]), we find vertex-centric

model to be a good fit for approaching parallelization of PLL.

In the vertex-centric model, parallel graph processing is viewed

as an iterative process, where each iteration processes the set of

active vertices. For each vertex in this set, we perform computations

based on the data from incoming and/or outgoing edges together

with the local vertex data, and then update the values/state asso-

ciated with the vertex. The vertices that record a change in their

local state become the active vertices for the next iteration. The

parallelization typically uses the Bulk Synchronous Parallel (BSP)

execution [73] and requires a global synchronization at the end of

each iteration. The entire process terminates once the set of active

vertices becomes empty.

A high level abstraction of the vertex-centric computation based

on a scatter-gather model [48, 61] is sketched in Algorithm 2. Each

vertex computation is described through two functions: 1) the Scat-
ter function, which describes how each vertex uses its vertex value

and edge value to propagate a message to its neighbors; and 2)

Gather function, which describes how each vertex computes a new

value based on its original value and all the new messages it re-

ceived.

Various more advanced parallel graph programming models are

proposed to further refine the vertex-centric model. This includes

the GAS (Gather-Apply-Scatter) [27] and the push and pull mod-

els [6, 55, 68], where the goal is to better fit the computational

and communication patterns of graph processing. There is also

work on generalizing the model to finer granularity, such as the

edge-centric model [61], or to coarser granularity, such as path- or

subgraph-centric [59], and 𝑘-step neighborhood [8, 40] models.

Finally, as we stated earlier, there has been recent interest in the

use of linear algebra libraries (and thus using existing methods for

parallelizing them). However, because of the masking (or pruning)

operation in PLL, a linear algebra based implementation is unlikely

to be efficient.

In this paper, we focus our efforts on the vertex-centric model,

with resulting code implemented efficiently through the use of MPI

and OpenMP. Exploration of the use of other models and whether

there can be a programmability or performance benefit from them

is a subject for future work.

3.2 Vertex-Centric Approach and PLL
Recall that the PLL algorithm (Alg. 1) iterates following the vertex

rank (order): at the 𝑖𝑡ℎ round, the vertex 𝑢 with rank 𝜋 (𝑢) = 𝑖

will be distributed to all other vertices in the graph using a BFS

process. The key condition to add 𝑢 into the label of 𝑣 is that the

distance between 𝑢 and 𝑣 cannot be recovered by earlier processed

vertices. The main challenge in parallelizing PLL is that adding

a vertex 𝑢 of rank 𝜋 (𝑢) to another vertex 𝑣 in the BFS traversal

seems to be dependent on the completion of labeling of all higher

ranked vertices in order to apply the distance check. In comparison,

for parallelization with the vertex-centric model, we would like to

distribute all vertices to their neighbors simultaneously for vertex

labeling. This requirement seems to be in conflict as there is no

guarantee that the higher vertices can finish the distribution before

lower rank ones. Indeed, as we mentioned earlier, all the existing

attempts have all failed to parallelize inter-vertex labeling while

preserving the canonical labeling criterion [3, 20, 58].

We address this problem through the following important result.

Theorem 1. Assume we spread all vertices simultaneously into
the graph (starting by sending each vertex to their neighbors), and
we do the spreading iteration by iteration following the vertex-centric
programming model. Let us consider a vertex 𝑢 with the rank 𝜋 (𝑢)
that reaches the vertex 𝑣 at the 𝑗-th iteration. Then if there is a vertex
𝑤 with the following properties: 1) with a higher rank than𝑢 (𝜋 (𝑤) <
𝜋 (𝑢)); 2) with a shorter distance to 𝑣 and 𝑢 (𝑑 (𝑤, 𝑣) < 𝑑 (𝑢, 𝑣) and
𝑑 (𝑤,𝑢) < 𝑑 (𝑢, 𝑣)), and 3) being recorded as a label of 𝑣 (𝑤 ∈ 𝐿(𝑣))
and 𝑢 (𝑤 ∈ 𝐿(𝑢)), then,𝑤 must be able to reach both 𝑢 and 𝑣 before
the 𝑗-th iteration (𝑑 (𝑢, 𝑣) steps).

Proof Sketch: We first note that conditions 1 and 3 ensure 𝑤

cannot be pruned by other vertices with higher ranks between

𝑤 and 𝑢 (and 𝑣). Then vertex 𝑤 can reach 𝑢 and 𝑣 in less than 𝑗

iterations as 𝑑 (𝑤,𝑢) < 𝑑 (𝑢, 𝑣) = 𝑗 and 𝑑 (𝑤, 𝑣) < 𝑑 (𝑢, 𝑣) = 𝑗 . (By

way of contradiction, if we assume 𝑤 cannot reach 𝑢 (or 𝑣) in 𝑗

iterations, it either has a distance longer than 𝑗 or it is pruned,

i.e, there is another vertex 𝑤 ′ with a higher rank and located on

the shortest path between𝑤 and 𝑢. In the latter case,𝑤 cannot be

recorded as a label in 𝑢 (or 𝑣).) 2

The Theorem implies that even when the spreading process is

parallelized across the node, we can correctly determine if 𝑢 should

be added to 𝐿(𝑣) by testing if there is any other vertex, say𝑤 , with

a higher rank than 𝑢 (𝜋 (𝑤) < 𝜋 (𝑢)), which can produce an equal

or shorter distance, i.e., 𝑑 (𝑢, 𝑣) ≥ 𝑑 (𝑢,𝑤) + 𝑑 (𝑤, 𝑣).
Recall that the distance check condition for canonical labeling

criterion requires not only the labeling of higher ranked vertices

ℎ to be completed before the distance check between 𝑢 and 𝑣 , but

also their distances 𝑑 (𝑢,ℎ) and 𝑑 (ℎ, 𝑣) to be smaller than 𝑑 (𝑢, 𝑣).
The latter condition is the key to the parallelization of PLL.

The main result above can also be stated (or derived) through

the linear algebra formulation. Recall from the last section that

the original PLL computes the distance labels one vertex at a time

(®𝑥1, ®𝑥2, · · · , ®𝑥𝑛). To parallelize it, we will generate labels for all ver-

tices with the same distance in the same batch. The details of the

BVC-PLL ICS ’20, June 29-July 2, 2020, Barcelona, Spain

process are as follows. At the iteration 0 (initialization): for any

vertex 𝑖 , let ®𝑧𝑖 = 𝐼𝑖 and ®𝑦𝑖 = 𝑧𝑖 (®𝑧𝑖 is the newly generated distance

vector recording all vertices’ distance to vertex 𝑖 if they record 𝑣𝑖
at the latest iteration. ®𝑦𝑖 is the “accumulated” vector for all vertices

recording their distance to vertex 𝑖 if they record 𝑣𝑖 up to the latest

iteration).

Next, at iteration 1, we have

®𝑧1 = 𝐴𝑇 ®𝑧1 ⊖ {®𝑦1}
®𝑧2 = 𝐴𝑇 ®𝑧2 ⊖ {®𝑦2 + ®𝑦1 ®𝑦𝑇

1
𝐼2}

®𝑧3 = 𝐴𝑇 ®𝑧3 ⊖ {®𝑦3 + (®𝑦1 ®𝑦𝑇
1
+ ®𝑦2 ®𝑦𝑇

2
)𝐼3}

· · ·
®𝑧𝑛 = 𝐴𝑇 ®𝑧𝑛 ⊖ {®𝑦𝑛 + (

∑𝑛−1
𝑖=1 ®𝑦𝑖 ®𝑦𝑇𝑖)𝐼𝑛}

and then for all 𝑖 , ®𝑦𝑖 = ®𝑦𝑖 + ®𝑧𝑖 . Here, ®𝑦𝑖 ®𝑦𝑇𝑖 generates the matrix

recording the distance between any two vertices via vertex 𝑖 (as their

distance label), and (®𝑦𝑖 ®𝑦𝑇𝑖)𝐼 𝑗 corresponds to the distance from any

vertex to vertex 𝑗 via vertex 𝑖 (they all use vertex 𝑗 in their distance

label). Using these values, we will repeat the above computations

until no new label is generated.

We can easily prove the following result:

Theorem 2. When the above algorithm stops, we have

®𝑦𝑖 = ®𝑥𝑖 , for all 𝑖 .

Proof Sketch: We will prove this by induction. First, let us

define both ®𝑥𝑖 and ®𝑦𝑖 by iteration. Let𝐴∗𝑘 = (𝐼 +𝐴+𝐴2 + · · · +𝐴𝑘)𝑇
for 𝑘-th iteration (𝑘 ≤ 𝑑 , 𝑑 is the diameter of the graph). We first

observe that

®𝑥𝑘
1

= 𝐴∗𝑘 𝐼1
®𝑥𝑘
2

= 𝐴∗𝑘 𝐼2 ⊖ (®𝑥𝑘
1
®𝑥𝑘
1

𝑇)𝐼2
= 𝐴∗𝑘 𝐼2 ⊖ (®𝑥𝑘−1

1
®𝑥𝑘−1
1

𝑇)𝐼2
®𝑥𝑘
3

= 𝐴∗𝑘 𝐼3 ⊖ (®𝑥𝑘
1
®𝑥𝑘
1

𝑇 + ®𝑥𝑘
2
®𝑥𝑘
2

𝑇)𝐼3
= 𝐴∗𝑘 𝐼3 ⊖ (®𝑥𝑘−1

1
®𝑥𝑘−1
1

𝑇 + ®𝑥𝑘−1
2
®𝑥𝑘−1
2

𝑇)𝐼3
· · ·
®𝑥𝑘𝑛 = 𝐴∗𝑘 𝐼𝑛 ⊖ (

∑𝑛−1
𝑖=1 ®𝑥𝑘𝑖 ®𝑥

𝑘
𝑖
𝑇)𝐼𝑛

= 𝐴∗𝑘 𝐼𝑛 ⊖ (
∑𝑛−1
𝑖=1 ®𝑥𝑘−1𝑖

®𝑥𝑘−1
𝑖

𝑇)𝐼𝑛

Here, the above equation can be observed as the set ®𝑥𝑘
𝑖
⊖ ®𝑥𝑘−1

𝑖
records what the vertex 𝑖 can reach in exactly 𝑘 steps, and this set

will not help prune ®𝑥𝑘
𝑗
(what vertex 𝑗 can reach within 𝑘 steps) for

𝑗 > 𝑖 .

Next, let us look at ®𝑦𝑘
𝑖
:

®𝑦𝑘
1

= ®𝑦𝑘−1
1
+𝐴𝑇 ®𝑧𝑘−1

1
⊖ {®𝑦𝑘−1

1
}

®𝑦𝑘
2

= ®𝑦𝑘−1
2
+𝐴𝑇 ®𝑧𝑘−1

2
⊖ {®𝑦𝑘−1

2
+ ®𝑦𝑘−1

1
(®𝑦𝑘−1

1
)𝑇 𝐼2}

®𝑦𝑘
3

= ®𝑦𝑘−1
3
+𝐴𝑇 ®𝑧𝑘−1

3
⊖ {®𝑦𝑘−1

3
+ (®𝑦𝑘−1

1
(®𝑦𝑘−1

1
)𝑇 + ®𝑦𝑘−1

2
(®𝑦𝑘−1

2
)𝑇)𝐼3}

· · ·
®𝑦𝑘𝑛 = ®𝑦𝑘−1𝑛 +𝐴𝑇 ®𝑧𝑘−1𝑛 ⊖ {®𝑦𝑘−1𝑛 + (∑𝑛−1𝑖=1 ®𝑦𝑘−1𝑖

(®𝑦𝑘−1
𝑖
)𝑇)𝐼𝑛}

Now, when 𝑘 = 0 (initialization), the ®𝑦0
𝑖
= ®𝑥0

𝑖
, for all 𝑖 trivially

holds. Now, we consider when 𝑘 holds to be true, we will derive

𝑘 + 1 to be true. To prove this, again, we can start with 𝑖 = 1, and

we can easily observe: ®𝑦𝑘+1
1

= ®𝑥𝑘+1
1

. Now, assume 𝑗 ≤ 𝑖 are all true,
then, let us consider 𝑖 + 1:

Algorithm 3 VC-PLL for 𝐺 = (𝑉 , 𝐸) with Order 𝜋

{Init.: (𝐿 (𝑣) : label; 𝛿𝐿 (𝑣) : new label from each iteration)}

1: ActiveVertices← 𝑉 ; ∀𝑣 ∈ 𝑉 , 𝛿𝐿 (𝑣) ← {(𝑣, 0) }, 𝐿 (𝑣) ← 𝛿𝐿 (𝑣)
2: while ActiveVertices ≠ ∅ do

{Scatter Phase:}

3: for all 𝑎 ∈ ActiveVertices do
a.Scatter(a.edges):

4: for all (𝑎, 𝑣) ∈ 𝑎.𝑒𝑑𝑔𝑒𝑠 do
5: for all (𝑢,𝑑 (𝑢, 𝑎)) ∈ 𝛿𝐿 (𝑎) , when 𝜋 (𝑢) < 𝜋 (𝑣) ∧ 𝑢 ∉ 𝐿 (𝑣) :

send (𝑢,𝑑 (𝑢, 𝑎) + 1) to 𝑣.𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠
6: end for
7: end for

ActiveVertices← ∅
{Gather Phase:}

8: for all 𝑣 ∈ 𝑉 : 𝑣.𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ≠ ∅{Received Message} do
v.Gather(𝑣.messages):

9: 𝛿𝐿 (𝑣) ← ∅
10: for all unique (𝑢,𝑑 (𝑢, 𝑣)) ∈ 𝑣.𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 do
11: if 𝑑 (𝑢, 𝑣) < minℎ∈𝐿 (𝑢)∩𝐿 (𝑣) {𝑑 (𝑢,ℎ) + 𝑑 (ℎ, 𝑣) } then
12: Add (𝑢,𝑑 (𝑢, 𝑣)) to 𝛿𝐿 (𝑣)
13: end if
14: end for
15: If 𝛿𝐿 (𝑣) ≠ ∅: 𝐿 (𝑣) ← 𝐿 (𝑣) ∪ 𝛿𝐿 (𝑣) ; Add 𝑣 to ActiveVertices

16: end for
17: end while

®𝑦𝑘+1
𝑖+1 = ®𝑦𝑘

𝑖+1 +𝐴
𝑇 ®𝑧𝑘
𝑖+1 ⊖ {®𝑦

𝑘
𝑖+1 + (

∑𝑖
𝑙=1
®𝑦𝑘
𝑙
(®𝑦𝑘
𝑙
)𝑇)𝐼𝑙 }

= ®𝑥𝑘
𝑖+1 +𝐴

𝑇 (®𝑥𝑘
𝑖+1 ⊖ ®𝑥

𝑘−1
𝑖+1) ⊖ {®𝑥

𝑘
𝑖+1 + (

∑𝑖
𝑙=1
®𝑥𝑘
𝑙
(®𝑥𝑘
𝑙
)𝑇)𝐼𝑙 }

= 𝐴∗𝑘 𝐼𝑖+1 ⊖ {(
∑𝑖
𝑙=1
®𝑥𝑘
𝑙
(®𝑥𝑘
𝑙
)𝑇)𝐼𝑙 }

= ®𝑥𝑘+1
𝑖+1 .

2

We note that in each iteration, all ®𝑧𝑖 can be computed simulta-

neously (as ®𝑧𝑖 now only depends on its own state and ®𝑦𝑖 , which
is computed from earlier iteration). Thus, we can parallelize PLL.

However, we still do not have an efficient implementation based

on linear algebra. More specifically, we have the requirement of

materializing (∑𝑘−1𝑖=1 ®𝑦𝑖 ®𝑦𝑇𝑖)𝐼𝑘 in the 𝑘-th step, which will be very

expensive.

3.3 Vertex-Centric Parallel Implementation
Algorithm Description: Algorithm 3 sketches the main process

of performing PLL based on the vertex-centric computation model

(Algorithm 2). In the Initialization phase, all vertices are active

initially (𝐴𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = 𝑉). For each vertex 𝑣 , 𝐿(𝑣) records the
partial label and 𝛿𝐿(𝑣) records the new label being generated at

each iteration. Initially, every vertex 𝑣 records itself and distance

0 (any vertex reaches itself in zero steps). The main computation

alternates between the Scatter phase and Gather phase and will

continue until no new active vertices exist (Lines 2 to 17):

1) Scatter phase (Lines 3 to 7, also referred to as the push model):

all active vertices with new labels perform a vertex Scatter function
(Lines 4 to 6): each sends their new labels with the updated distance:

(𝑢,𝑑 (𝑢, 𝑎)) ∈ 𝛿𝐿(𝑎) → (𝑢,𝑑 (𝑢, 𝑎) + 1) to all their neighbors (Line

5) with two conditions: the rank of vertex 𝑢 needs to higher than 𝑣

(otherwise, it will be pruned) and it has never been added to the

label of 𝑣 .

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Ruoming Jin, et al.

B:5
A:8

D:2

C:6

F:4
E:3

H:10

G:9

J:11
I:1 L:7K:12

{(I,0)}

{(H,0)}

{(J,0)}

{(E,0)}

{(F,0)}
{(D,0)}

{(A,0)}

{(K,0)}

{(B,0)}

{(L,0)}

{(C,0)}

{(G,0)}

a Initial 𝐿 of Graph𝐺

B:5
A:8

D:2

C:6

F:4
E:3

H:10

G:9

J:11
I:1 L:7K:12

{(I,0)}

{(H,0),
(A,1),
(I,1)} {(J,0),

(I,1)}

{(E,0),
(I,1),
(D,1)}

{(F,0),
(I,1)}

{(D,0),
(I,1)}

{(A,0),(D,1)}

{(K,0),
(J,1),
(L,1)}

{(B,0),(D,1),(E,1)}

{(L,0),(F,1)}

{(C,0),(B,1),(E,1),(F,1)}

{(G,0),
(F,1),
(L,1)}

b 𝐿 after the 1st iteration

B:5
A:8

D:2

C:6

F:4
E:3

H:10

G:9

J:11
I:1 L:7K:12

{(I,0)}

{(H,0),
(A,1),
(I,1)} {(J,0),

(I,1)}

{(E,0),
(I,1),
(D,1)}

{(D,0),
(I,1)}

{(A,0),(D,1),
(I,2)}

{(K,0),
(J,1),(L,1),
(I,2),(F,2)}

{(B,0),(D,1),(E,1),
(F,2),(I,2)}

{(L,0),(F,1),
(I,2)}

{(C,0),(B,1),(E,1),(F,1),
(D,2),(I,2)}

{(G,0),
(F,1),
(L,1),
(I,2)}

{(F,0),
(I,1)}

c 𝐿 after the 2nd iteration
Figure 2: A VC-PLL Example: light shadow vertices got new labels (colored in red) in this iteration and will spread them in the next iteration.

2)Gather phase (Line 8-16): all vertices that receive a newmessage

(𝑣 .𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ≠ ∅) perform a vertex Gather function (Lines 9-15): For

a vertex 𝑣 , it traverses all its received messages (distance label from

its neighbors), and for each unique vertex (𝑢,𝑑 (𝑢, 𝑣)) across the
set of messages, it confirms the distance check for the canonical

labeling criterion: for a distance label message (𝑢,𝑑 (𝑢, 𝑣)), 𝑑 (𝑢, 𝑣)
must be smaller than the distances via any existing labels (𝐿), i.e.,

𝑑 (𝑢, 𝑣) < minℎ∈𝐿 (𝑢)∩𝐿 (𝑣) 𝑑 (𝑢,ℎ) + 𝑑 (ℎ, 𝑣) (Line 11). If this true, it
will be added into 𝛿𝐿(𝑣). Once 𝛿𝐿(𝑣) is computed and it is not

empty, we will add it into 𝐿(𝑣) and add 𝑣 to ActiveVertices (Line

15). Note that we need to identify unique vertices in the step above,

because two neighbors may send the same vertex 𝑢.

Running Example: Figures 2 illustrates the first 2 iterations of

label spreading in VC-PLL, where the labels in red denote newly

generated labels 𝛿𝐿. At each iteration, 𝐿(𝑣) is simply the union of

all 𝛿𝐿(𝑣) from all earlier iterations.

3.4 Theoretical Properties
This section explains two key properties of the proposed VC-PLL

algorithm.

Property I: Correctness. Theorem 3 proves that VC-PLL produces

the same label as PLL.

Theorem 3. VC-PLL (Algorithm 3) produces the minimum label-
ing size (or canonical hub labeling) [4] given a vertex order 𝜋 .

Due to the page limitation, please refer to our supplementary

materials for the detailed proofs
1
.

Property II: TimeComplexity. Following the approach in PLL [3],
we can obtain a theoretical upper-bound of VC-PLL’s time com-

plexity.

Theorem 4. Assuming graph 𝐺 with a tree-decomposition [60] of
tree-width𝑤 , then there is a vertex order 𝜋 , in which the VC-PLL takes
𝑂 (𝑤 |𝐸 | log |𝑉 | +𝑤2 |𝑉 | (log |𝑉 |)2) time (the same as that of PLL [3]).

Proof Sketch: The main idea is to utilize a recursive centroid

extraction procedure to reorganize the tree decomposition: the cen-

troid bag of the tree can break the tree decomposition into disjoint

components where each disjoint components has no more than

half of the tree bags. The centroid bag will become of the root of

the tree, and its children will be the centroid bag of the disjoint

subtrees. Given this, the new tree’s height is at most log |𝑉 |. We

then can order the vertices in the graph based on their highest node in
the tree, and if two vertices have the same height, they can break order

1
https://drive.google.com/open?id=1VeNgaKqr4G2Flxov2v8gIUKdqJ8maB9z

arbitrarily. Since each node in the tree corresponds to a graph sepa-

rator, the maximal label size of any vertex is𝑤 log |𝑉 | (for a vertex
in the leaf bag, all the vertex in its ancestors including its own bag

of vertices can be added into the label). Then, the time complexity

of generating distance labels is bounded by 𝑂 (𝑤 log |𝑉 | |𝐸 |). The
time complexity of distance check is 𝑂 (𝑤2 |𝑉 | log2 |𝑉 |). 2

3.5 Limitations of VC-PLL
Sequential Performance Comparison: We implemented Alg. 3

(VC-PLL) and tested its performance on the DBLP graph (that is

introduced in Section 6) against PLL using a single thread. We

found that it has poor performance with a total execution time of

13, 583 seconds compared to less than 100 seconds for PLL! It does

not fare well against PLL in other graphs either.

Basic algorithm and performance analysis reveal that VC-PLL

introduces additional computational costs due to extra labeling

spreading and distance testing. For a given vertex 𝑢, PLL will send

it to a vertex 𝑣 only once. In BFS, PLL will flag 𝑣 after one dis-

tance label (𝑢,𝑑 (𝑢, 𝑣)) is passed through (Line 7 in Algorithm 1 is

sequentially executed). But VC-PLL can send multiple (𝑢,𝑑 (𝑢, 𝑣))
messages to the same 𝑣 in two consecutive iterations. Therefore,

VC-PLL introduces redundant distance labeling messages, which

may also lead to redundant distance checks. Furthermore, individ-

ual distance checks in PLL can be much faster due to the reuse of

𝐿(𝑢) in an array or hash-table representation.

Thus, our question is: can VC-PLL overcome its limitations and
reduce those additional costs (message spreading and remote memory
access)?

4 BATCHED VERTEX-CENTRIC ALGORITHM
To deal with the performance inefficiency of VC-PLL discussed in

the last section, we introduce a new algorithm. Specifically, here,

the batches of the vertices are formed according to the rank of each

vertex. For instance, the top 1𝐾 vertices form the first batch, and the

next 1𝐾 vertices form the second batch, etc. Batches are processed

in sequence with the vertices within each batch being processed

in parallel. The reason to use batch (as we will discuss later in

more details) is by using batch, we can 1) effectively and efficiently

eliminate redundant message passing, and 2) significantly improve

remote vertex memory access (as only the vertices in the batch

need to be accessed remotely).

BVC-PLL Algorithm: Algorithm 4 sketches the batched Vertex-

Centric algorithm for PLL, referred to as BVC-PLL. Specifically,

here, the batches of the vertices are formed according to the rank

https://drive.google.com/open?id=1VeNgaKqr4G2Flxov2v8gIUKdqJ8maB9z

BVC-PLL ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Algorithm 4 BVC-PLL for 𝐺 = (𝑉 , 𝐸) with Order 𝜋

{Init.: (𝐿 (𝑣) : label; 𝛿𝐿 (𝑣) : new label from each iteration)}

1: ∀𝑣 ∈ 𝑉 , 𝐿 (𝑣) ← ∅,𝐶 (𝑣) ← ∅
2: Split 𝑉 into equal-size batches: 𝐵1, 𝐵2, · · · 𝐵𝑇 where 𝐵𝑖 include the

vertices with rank (𝑖 − 1) × |𝑉 |/𝑇 + 1 to 𝑖 × |𝑉 |/𝑇
3: for all 𝐵𝑖 : 𝑖 = 1 𝑡𝑜 𝑇 {Labeling in Batch} do
4: ActiveVertices← 𝐵𝑖 ; ∀𝑢 ∈ 𝐵𝑖 , 𝛿𝐿 (𝑢) ← {(𝑢, 0) }, 𝐿 (𝑢) ← 𝐿 (𝑢) ∪

𝛿𝐿 (𝑢) , and map 𝐿 (𝑢) to Hashtable 𝐻 (𝑢)
5: while ActiveVertices ≠ ∅ do

{Scatter Phase:}

6: for all 𝑎 ∈ ActiveVertices do
a.Scatter(a.edges):

7: for all (𝑎, 𝑣) ∈ 𝑎.𝑒𝑑𝑔𝑒𝑠 do
8: for all (𝑢,𝑑 (𝑢, 𝑎)) ∈ 𝛿𝐿 (𝑎) , when 𝜋 (𝑢) < 𝜋 (𝑣) ∧ 𝑢 ∉ 𝐶 (𝑣) :

flag 𝑢 in𝐶 (𝑣) and send (𝑢,𝑑 (𝑢, 𝑎) + 1) to 𝑣.𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠
9: end for
10: end for

ActiveVertices← ∅
{Gather Phase:}

11: for all 𝑣 ∈ 𝑉 : 𝑣.𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ≠ ∅ {Received Messages} do
v.Gather(𝑣.𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠):

12: 𝛿𝐿 (𝑣) ← ∅
13: for all (𝑢,𝑑 (𝑢, 𝑣)) ∈ 𝑣.𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 do
14: if 𝑑 (𝑢, 𝑣) < minℎ∈𝐿 (𝑢)∩𝐿 (𝑣) {𝑑 (𝑢,ℎ) + 𝑑 (ℎ, 𝑣) } then
15: Add (𝑢,𝑑 (𝑢, 𝑣)) to 𝛿𝐿 (𝑣)
16: end if
17: end for
18: If 𝛿𝐿 (𝑣) ≠ ∅: 𝐿 (𝑣) ← 𝐿 (𝑣) ∪ 𝛿𝐿 (𝑣) ; Add 𝑣 to ActiveVertices

19: If 𝑣 ∈ 𝐵𝑖 : Add 𝛿𝐿 (𝑣) to 𝐻 (𝑣)
20: end for
21: end while
22: ∀𝑣 ∈ 𝑉 ,𝐶 (𝑣) ← ∅
23: end for

of each vertex (Line 2). The earlier processed batch consists of

the vertices with higher ranks (Line 3). BVC-PLL labels vertices

one batch at a time and for assigning the labels in each batch, the

vertex-centric computation in VC-PLL is followed (Lines 5-21) –

more specifically, the Scatter Phase and Scatter function, Gather

Phase and Gather function is preserved with only minor revisions

for dealing with message passing and remote memory access. Each

vertex 𝑣 is associated with a candidate-bit vector 𝐶 (𝑣). Its length is

equal to the batch size. It will be initialized for each batch (Lines

1 and 22). During the Scatter phase, for any vertex 𝑎 to send a

message (𝑢,𝑑 (𝑢, 𝑎) + 1) to its neighbor 𝑣 , it will check if 𝑢 is sent to

𝑣 before (𝑢 ∉ 𝐶 (𝑣), Line 8). This corresponds to the unvisited flag in
the original PLL. Due to the atomic compare-and-swap operation, it

can guarantee only one message from 𝑢 is being sent to 𝑣 and thus

help resolve the redundant distance labeling generation problem

(in Subsection 3.5).

Each vertex 𝑢 in the batch 𝐵𝑖 will map its existing label 𝐿(𝑢)
to a hash-table (or array) 𝐻 (𝑢) at the beginning of vertex-centric
computation (Line 4). Since the new label of 𝑢 may be generated

during the labeling process, we will map the new label 𝛿𝐿(𝑣) to
𝐻 (𝑣) when the update is available (Line 19). Given this, the distance

check (in Line 14) only needs to go through 𝐿(𝑣), and thus has the

same distance check cost as the original PLL.

Next, we discuss two key optimization techniqueswhich leverage

the batch processing to reduce the additional computational costs

from VC-PLL:

Using Bit Operation for EfficientMessage Passing and Filter-
ing: In each batch processing step, an active vertex only processes

up to 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 unique labels. Based on this important observa-

tion, we can use a compact bit-vector data structure called candidate
bit-vector for efficient message filtering. The basic idea is as follows.

Each active vertex maintains a candidate bit-vector with the length

of 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 bits, each bit corresponding to a vertex in the batch

(e.g., if the 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 is 1K, such candidate bit-vector is only 128

bytes). If a vertex 𝑢 in the current batch is sent to a vertex 𝑣 , then

its corresponding bit in the candidate bit-vector of 𝑣 is set. Note

that the use of bit-vectors also allows atomic compare-and-swap
operation in the shared memory setting. Note that without batch

processing, we have to consider doing an expensive list merge for

handlingmessage passing and aggregation (as the scatter and gather

functions in VC-PLL for distance label messaging and processing,

respectively).

Improving Data Locality for Remote VertexMemory Access:
Simply speaking, only the vertices in the current processing batch

can be accessed remotely during the vertex-centric computation.

Because the number of vertices in each processing batch is limited,

we can use a compact data structure such as an array or hash-table

to store their labels for efficient𝑂 (1) access (similar to what is done

in PLL for each processed vertex in distance checks).

Correctness: It is easy to see that BVC-PLL (Algorithm 4) produces
the minimal labeling given a vertex order 𝜋 : the distance criterion
(𝑢 ∈ 𝐿(𝑣) if𝑢 has the highest rank in 𝑃𝑢𝑣) is maintained as BVC-PLL

can assign 𝑢 to 𝐿(𝑣) at 𝑢’s batch correctly (Theorem 3) following

the batch processing order. Another interesting property is that

when the batch size reduces to one, i.e., when we process one vertex

at a time, then BVC-PLL behaves exactly the same as the original

PLL [3].

Complexity:We note that introducing and using bit-vector 𝐶 (𝑣)
for each vertex 𝑣 and 𝐻 (𝑢) for each processing batch vertex 𝑢 does

not introduce additional time complexity compared with PLL. PLL

uses only one bit for each vertex 𝑣 as the visited flag and one𝐻 (𝑢) for
distance check, whereas BVC-PLL simply utilizes a group of them

at the same time. Thus, the time complexity results of Theorem 4

hold for BVC-PLL as well.

5 VARIANTS AND PARALLEL IMPLEMENT.
5.1 Generalization
Directed Graphs: For a directed graph, each vertex 𝑣 is assigned

with two labels 𝐿𝑖𝑛 (𝑣) and 𝐿𝑜𝑢𝑡 (𝑣). VC-PLL and BVC-PLL can be

easily extended to handle directed graphs by considering these as

separate computations. Specifically, in the Scatter function, the new

labels 𝛿𝐿𝑖𝑛 and 𝛿𝐿𝑜𝑢𝑡 will be sent out along the outgoing edges and

incoming edges, respectively. In the Gather function, there will be

two message queues: one for candidate vertices in 𝐿𝑖𝑛 , and another

for those in 𝐿𝑜𝑢𝑡 . The labels generated by this algorithm will be

canonical. The computational complexity analysis in Subsection 3.4

holds for directed graphs as well.

Weighted Graphs: The direct application of VC-PLL and BVC-PLL
(by changing 𝑑 (𝑢, 𝑣) +1 to 𝑑 (𝑢, 𝑣) +𝑤𝑒 where𝑤𝑒 is the edge weight)
on weighted graphs can produce a 2-hop labeling; but it may not be

a canonical labeling. This is because unlike unweighted graphs, the

iteration on the vertex-centric model will not be in sync with the

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Ruoming Jin, et al.

distance between two vertices. For instance, when vertex 𝑢 reaches

𝑣 in two iterations, their distance may be larger than a path via

vertex𝑤 with a higher rank, but𝑤 may take more than 2 iterations

to reach 𝑣 and 𝑢. Given this, we cannot use the partial label 𝐿(𝑢) at
an arbitrary iteration to fully determine if vertex 𝑣 is a true or final

label for 𝑢 anymore. Thus, adding vertex 𝑣 into 𝑢’s partial label

𝐿(𝑢) or 𝛿𝐿(𝑢) (using the partial labels in the weighted graph) may

lead to unnecessary vertices being spread in the networks. To deal

with this problem, at the end of each batch processing (Line 22 in

BVC-PLL), we can perform a distance recheck using only the labels

from the batch. Since the hash tables of the labeling vertices in the

batch are still in the memory, this recheck can be quite efficient.

5.2 Parallel Implementation Issues
Shared Memory Implementation: The BVC-PLL computation

(as shown in Algorithm 4) can be easily parallelized with coarse-

grained threads. The computation of each batch uses vertex-centric

processing (line 5 to line 21) that consists of two parallel phases:

(Scatter andGather), with an implicit synchronization between them.

In each phase, each thread processes a chunk of active vertices with

dynamic scheduling to achieve load balance. In shared memory

implementation, we use OpenMP to parallelize each batch, man-

age the workload of each thread dynamically, and expand active

vertices.

Extension toDistributed Platforms: BVC-PLL’s sharedmemory

parallel implementation was also extended to distributed platforms

using MPI. Because BVC-PLL processes nodes based on an order,

and this order is, in turn, based on degrees, we use the following

process to maintain load balance. After sorting vertices according

to their rank (i.e. degrees) from high to low, vertices are assigned

to nodes in a zigzag round-robin way. For instance, assuming there

are 𝑝 nodes in total, 𝑝 consecutive vertices are assigned to node 0

to node 𝑝 − 1, respectively; then the next 𝑝 consecutive vertices are

assigned to node 𝑝 − 1 to node 0, and so on.

In maintaining information for each node, we follow the master-
mirror notion (as also used by PowerGraph [27]). Every edge is

placed on the computer node that owns its destination vertex (as a

master) [70]. As described above, a vertex is assigned to a specific

computer node on which the vertex is a master. If the vertex is the
source of an edge that is assigned to a different computer node, the

same vertex is a mirror on that computer node. Only the master

contains all labels of that vertex.

The parallel implementation is based onMPI. In the scatter phase,

every master sends its newly added labels to all of its mirrors. Then

a mirror scatters those labels to its neighbors on that computing

node. In the gather phase, every node maintains a hash-table to

store all labels of vertices in the current batch. When conducting

distance check, a vertex only needs to look up its own labels and this

hash-table. Thus, the distance check only requires local operations

without any message passing to remote nodes. The hash-table is

once established at the beginning of every batch and is synchronized

at the end of the scatter phase. Note that the batch strategy is even

more important for the distributed implementation than the shared

memory one as it reduces the remote access overhead significantly.

SIMD Parallelization for Weighted Graphs: BVC-PLL is able

to significantly increase the data locality for remote vertex memory

Table 2: Characterization of evaluation graphs.
Name Graph Category |𝑉 | |𝐸 |
GNUT Gnutella Social 63 K 148 K

DBLP DBLP Citation 317 K 1 M

WIKI Wikipedia Talk Comm. 2.4 M 5 M

YOUT YouTube Social 3.2 M 9 M

TREC TREC WT10g Hyperlink 1.6 M 8.0 M

SKIT Skitter Computer 1.7 M 11 M

CADO Catster/Dogster Social 62 K 15 M

FLIC Flickr Social 2.3 M 33 M

HOLY hollywood-2009 Social 1.1 M 114 M

INDO indochina-2004 Hyperlink 7.4 M 194 M

IT it-2004 Hyperlink 41.3 M 1.1 B

GSH gsh-2015-host Computer 68.6 M 1.8 B

access, thereby offering us extra opportunities to better exploit

fine-grained data-level parallelism (i.e., SIMD parallelism or vector-

ization). Consider the Gather Phase in Algorithm 4 that involves

an intensive label distance check kernel (line 13 to line 17). BVC-

PLL can vectorize this kernel with the help of advanced SIMD

gather/scatter and mask instructions in the latest AVX-512 intrinsic

set
2
. Unfortunately, such vectorization requires a dynamic expan-

sion of the compact label structure that offsets most benefits of

SIMD parallelization for unweighted graphs. However, vectoriza-

tion turns to be useful for weighted graphs because the distance

recheck operation incurs extra computation overhead. Efficient

SIMD parallelization can significantly reduce such overhead.

6 EVALUATION
In this section, we perform a detailed evaluation of BVC-PLL, focus-

ing on answering the following questions: 1) How does BVC-PLL

algorithm perform against the original PLL in a sequential setting

(single thread; no parallelism)? 2) In shared memory setting, how

does BVC-PLL scale as the number of threads increases? 3) How

well does our distributed memory implementation scale (especially

on large graphs with more than a billion edges)? 4) How does the

weighted extension of BVC-PLL with SIMD perform and how does

it fare against ParaPLL [58] (the state-of-the-art parallel weighted

PLL algorithm)?

6.1 Experimental Setup
Platforms: Our shared memory scaling experiments were per-

formed on an Intel Xeon Gold 6138 CPU. It is a Skylake processor

with 20 cores running at 2.0 GHz supporting 512-bit AVX-512 in-

trinsics, with 27.5 MB L3 cache and 192 GB DDR4 memory. All

code is compiled with an Intel icc compiler (version 19.0.2.187) with

-O3 optimization option. Hyper-threading is not used to simplify

the analysis of experiment results. Our experiments for distributed
memory scalability (while using one thread per node) were per-

formed on a cluster with 16 nodes, each of which has an Intel Xeon

E5-2680 CPU at 2.4 GHz with 35.8 MB L3 cache and 125 GB DDR4

memory. For evaluating the version that combines shared and dis-
tributed memory parallelism (and ability to process large graphs),

we use another cluster with up to 224 cores (maximum of 28 cores

per node and up to 8 nodes) and up to 512 GB memory per node.

Graph Datasets: The 12 graphs used in our evaluation are sum-

marized in Table 2. They are from 5 categories (Social, Citation,

2
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

BVC-PLL ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Table 3: Unweighted Performance (sec.): BVC-PLL vs. PLL. LT de-

notes labeling time (sec.). |𝐿 | denotes the average label size for each
vertex. SP denotes speedup. BVC-PLL and PLL have the same label

size. The same short names are used for Table 4.

Name |𝐿 | PLL BVC-PLL

LT LT SP

GNUT 477 33 13 2.46

DBLP 214 61 47 1.30

WIKI 12 40 32 1.24

YOUT 70 285 249 1.15

TREC 269 462 323 1.43

SKIT 138 317 242 1.31

CADO 96 117 92 1.28

FLIC 442 1,624 909 1.79

HOLY 2,199 10,743 4,368 2.46

INDO 442 4,755 3,508 1.36

1 2 4 8 16 20
1

2

4

8

16

32

Sp
ee

du
p

ov
er

 1
 T

hr
ea

d

Thread

 GNUT
 DBLP
 WIKI
 YOUT
 TREC
 SKIT
 CADO
 FLIC
 HOLY
 INDO

a Speedup over 1 thread

1 2 4 8 16 20
1

2

4

8

16

32

S
pe

ed
up

 o
ve

r P
LL

Thread
b Speedup over PLL

Figure 3: The scalability of BVC-PLL (unweighted)

Communication, Hyperlink, and Computer) with varied numbers

of vertices and edges – GNUT, and WIKI are from SNAP
3
, DBLP, YOUT,

TREC, SKIT, CADO, and FLIC are from KONET
4
, HOLY and INDO are

from SuiteSparse Matrix Collection
5
, and IT and GSH are from We-

bGraph
6
. Particularly, IT and GSH are two large graphs with more

than 1 billion edges. Because of large memory and computation

time associated with these two massive datasets, experiments were

limited to the version that combined shared and distributed mem-

ory parallelism, and used either 4, 6, or 8 nodes, with 4, 8, 16, or 28

threads on each node. For all other datasets, because of limited size

(and thus parallelism), we either used only 1 node or 1 thread per

node. These graphs are all unweighted. To test the performance

of our BVC-PLL on weighted graphs, we randomly assign weights

(from 1 to 7 with a uniform distribution) to their edges. Since we

only evaluate algorithms for undirected graphs, we have trans-

formed the edges in the directed graphs in Citation and Hyperlink

as undirected edges.

Baselines: For the sequential performance comparison on un-

weighted graphs, we compare BVC-PLL against the PLL imple-

mentations by the original authors [3] and by [44]. We found these

two implementations provide comparable performance with the

former being slightly faster. Given this, we only compare against

this version. For performance comparison on weighted graphs, we

compare the weighted BVC-PLL against the implementation of

ParaPLL [58], applying SIMD parallelism to both. Note that existing

published work on parallelizing PLL (across threads or nodes) either

has limited parallelism or does not produce the same results as a

sequential implementation, and thus no comparison was performed.

In all of our experiments, we determine the vertex order through

3
https://snap.stanford.edu/snap/

4
http://konect.uni-koblenz.de/

5
https://sparse.tamu.edu/

6
http://law.di.unimi.it/datasets.php

GNUTELLA

TREC WT10G0

20

40

60

80

100

E
xe

cu
tio

n
Ti

m
e

(%
) gather-o

 gather-d
 scatter
 others

a BVC-PLL breakdown
GNUTELLA

TREC WT10G106

107

108

109

1010

E
dg

e
A

cc
es

s
C

ou
nt

 (B
)

 PLL
 BVC-PLL
 Times

0

5

10

15

20

25

Ti
m

es

b Edge access count
Figure 4: Performance analysis

GNUTELLA

TREC WT10G0

20

40

60

80

100

LL
C

 M
is

s
R

at
e

(%
) PLL

 BVC-PLL

a LLC miss rate
GNUTELLA

TREC WT10G
1E7

1E8

1E9

1E10

1E11

LL
C

 M
is

s
C

ou
nt

 PLL
 BVC-PLL

b LLC miss count
Figure 5: Data locality: BVC-PLL vs. PLL

the original and the most popular method where the vertices are

ordered by their vertex degree [3, 44].

Throughout our experiments, we use 1024 as the batch size

for unweighted graphs and use 512 for weighted graphs. In our

experimental platform, we found those two are the optimal batch

size. In general, we observe the larger the batch size the better the

performance, as long as there is available memory. Due to the space

limitation, we will not report the results that explore the sensitivity

to batch size.

6.2 BVC-PLL vs PLL and Shared Memory
Scalability

Table 3 shows the performance comparison between BVC-PLL as a

sequential algorithm and PLL (both using a single thread and no

other parallelism, such as SIMD) on all graphs. Both algorithms use

the same vertex order and produce the same label size, as expected.

Interestingly, the BVC-PLL algorithm consistently outperforms PLL

with the speedup ranging from 1.15× (YOUT) to 2.46× (GNUT and

HOLY) with an average speedup 1.58× over PLL. Later in this section,
we will report a more detailed cost breakdown and comparison.

Figure 3 shows the shared-memory scalability of BVC-PLL on all

but the two largest graphs (1 node execution was not feasible for

these graphs because of memory requirements). Figure 3a shows

its speedup over 1-thread BVC-PLL, while Figure 3b shows its

speedup over the original sequential PLL. With 20 threads, BVC-

PLL can achieve up to 11.08× and 24.95× speedup over its 1-thread

version and PLL, respectively (with geometric mean 6.68× and

9.33×, respectively), demonstrating good scalability.

In addition, by comparing Figure 3 and the average label sizes

in Table 3, we found that generally, BVC-PLL scales better as the

average label size increases. For example, GNUT and HOLY with the

largest average label sizes result in the best scalability while WIKI
with the smallest results in lower scalability. The labeling size pro-

vides a good indication of the total computational costs (message

passing and distance checks) involved for each vertex.

Figure 4a shows the overall running time breakdown on two

graphs: GNUT and TREC. Due to space limitation, we only report

results for these two – trends are similar in other graphs. We can

https://snap.stanford.edu/snap/
http://konect.uni-koblenz.de/
https://sparse.tamu.edu/
http://law.di.unimi.it/datasets.php

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Ruoming Jin, et al.

1 2 4 8 16
1

2

4

8

16

S
pe

ed
up

Nodes

 HOLY
 INDO

Figure 6: The scalability of distributed BVC-PLL (unweighted)

4 86
1

2

3

4

5

Sp
ee
du
p

Nodes

 IT
 GSH

a Speedup over 4 nodes w/ 28 threads

4 8 16 28
1

2

4
Sp

ee
du
p

Threads
b Speedup over 4 threads w/ 8 nodes

Figure 7: Scalability of BVC-PLL (unweighted) on large graphs

see the Gather and the Scatter phases dominate the overall compu-

tational costs. In addition, within gather, the distance check time

takes about 60%−80% and 30%−40% of the gather phase and overall

time, respectively.

Figure 4b shows the total number of edge access for BVC-PLL

and PLL on two graphs: GNUT and TREC. We can see that BVC-PLL

has 5 and 18 times reduction for both graphs. Finally, Figure 5 shows

the LLC (last level cache) miss rate and miss access count for the

entire labeling process of BVC-PLL and PLL. We can see BVC-PLL

has consistent lower LLC miss rate and access count than PLL.

6.3 Distributed Memory Results
To further test scalability, we experimented with distributed mem-

ory parallelism. For the third and fourth largest datasets in our

collection, HOLY and INDO, we used 1 thread per node. (Experiments

on the two largest datasets, IT and GSH, combine both distributed

memory and shared memory parallelism and are reported in the

next subsection.) Figure 6 shows the distributed memory scalability

of unweighted BVC-PLL on HOLY and INDO. For HOLY, BVC-PLL
achieves 2.05×, 4.00×, 7.18×, and 11.85× speedup over 1 node as

the number of nodes is 2, 4, 8, and 16, respectively. For INDO, the
speedups over 1 node are 1.99× (on 2 nodes), 3.74× (on 4 nodes),

6.29× (on 8 nodes), and 9.32× (on 16 nodes).

When the number of nodes is large (e.g., 16 nodes), BVC-PLL

cannot achieve near linear speedups mainly because of the commu-

nication overhead caused by the large volume of label data. This is

particularly obvious for INDO that generates large label data.

6.4 Test on Large Graphs w/ Billions of Edges
BVC-PLL works on large graphs as well. We report results from IT
and GSH that have over 1 billion edges. Because of computation time

andmemory requirements, experiments on these graphs involve the

combination of distributedmemory and sharedmemory parallelism,

with 4, 6, or 8 nodes and 4, 8, 16, or 28 threads per node.

Figure 7 shows the results – Figure 7a shows the scalability

from 4 to 8 nodes (each with 28 threads). From 4 to 6 nodes, IT
shows super-linear speedup mainly due to the increase of available

memory and cache capacity; while from 6 to 8 nodes, its speedup is

sublinear because of the intensive label data communication. GSH

Table 4: Weighted Performance (sec.): BVC-PLL vs. PLL (Dijkstra).
“-S” denotes SIMD version. “-N” denotes non-SIMD version.

Name |𝐿 | PLL BVC-PLL

LT-N LT-S LT-N LT-S SP-N SP-S

GNUT 656 52 47 123 37 0.42 1.26

DBLP 387 152 139 293 146 0.52 0.95

WIKI 152 350 327 396 171 0.88 1.92

YOUT 147 652 625 763 546 0.85 1.14

TREC 304 632 579 1,140 662 0.55 0.87

SKIT 432 1,511 1,467 2,146 921 0.70 1.59

CADO 224 527 510 442 347 1.19 1.47

FLIC 653 3,879 3,826 4,189 2,483 0.93 1.54

HOLY 2,217 18,707 18,041 24,161 10,399 0.77 1.73

INDO 828 13,940 13,105 26,744 14,768 0.52 0.89

1 2 4 8 16 20
1

2

4

8

16

Sp
ee

du
p

ov
er

 1
 T

hr
ea

d
Thread

 GNUT
 DBLP
 WIKI
 YOUT
 TREC
 SKIT
 CADO
 FLIC
 HOLY
 INDO

a Speedup over 1 thread

1 2 4 8 16 20
0.5

1

2

4

8

16

Sp
ee

du
p

ov
er

 P
LL

Thread
b Speedup (Dijkstra)

Figure 8: Scalability of BVC-PLL (weighted) on shared memory

shows a similar trend. Moreover, Figure 7b reports BVC-PLL’s good

scalability on 8 nodes with changing the OpenMP thread count

from 4 to 28.

6.5 Extension to Weighted Graphs and SIMD
A similar performance study is conducted between PLL and BVC-

PLL for weighted graphs. To evaluate weighted BVC-PLL’s sequen-

tial performance against PLL, we have modified the original PLL

implementation as suggested in [3], changing its BFS traversal to

Dijkstra. We also extended BVC-PLL as described in Subsection 5.1.

Please notice: both PLL and BVC-PLL are optimized with SIMD for

the weighted version (and for unweighted, we also implemented

them with SIMD however without obvious speedup change).

Table 4 shows the comparison results for 1-thread SIMD and non-

SIMD versions of PLL and BVC-PLL. For all non-SIMD tests, PLL

consistently performs better than BVC-PLL; while for most SIMD

tests, BVC-PLL outperforms PLL. This is because the weighted BVC-

PLL introduces additional distance check (due to additional message

passing) and rechecks, which significantly increases the number

of instructions for BVC-PLL, resulting in degraded performance.

However, SIMD parallelism is a good remedy that can significantly

reduce the number of instructions. It should be noted that BVC-PLL

is able to effectively exploit SIMD parallelism because the data lo-

cality has been improved. (See the performance analysis in the last

Subsection). In particular, for SIMD version, BVC-PLL outperforms

PLL for 7 out of 10 graphs, resulting in 1.14× to 1.92× speedup with
an average of 1.34×. For the slowdown cases, BVC-PLL’s perfor-

mance is only degraded up to around 10%. Our BVC-PLL is able to

continue exploring hierarchical parallelism to further extract the

most out of the massive parallelism of modern processors.

Figure 8 shows the scalability of BVC-PLL on all weighted graphs,

in which, Figure 8a shows its speedup over 1-thread BVC-PLL while

Figure 8b shows its speedup over PLL. With 20 threads, BVC-PLL

BVC-PLL ICS ’20, June 29-July 2, 2020, Barcelona, Spain

1 2 4 8 16 20
1
4

16
64

256
1024
4096

16384
La

be
lin

g
Ti

m
e

(s
)

Thread

 ParaPLL
 BVC-PLL-S
 BVC-PLL-N
 SP-S
 SP-N

20

40

60

80

100

120

Sp
ee

du
p

Figure 9: Parallel Weighted: BVC-PLL vs. ParaPLL on GNUT

can achieve up to 12.34× and 15.68× speedup over 1-thread and

PLL, demonstrating good scalability.

Finally, we compare BVC-PLL with the state-of-the-art ParaPLL,

which does weighted parallel PLL. Unfortunately, it can only run

on small graphs (this is consistent on what being presented in their

original paper [58]). In Figure 9 shows the performance comparison

of BVC-PLL and ParaPLL on the graph GNUT (the only graph we

are able to run for ParaPLL, as it throws an error of Segmentation
Fault with the other graphs). For this graph, we can see that BVC-

PLL is, in general, more than one order of magnitude faster than

ParaPLL (even for non-SIMD version).

7 RELATEDWORK
Many existing efforts aim to efficiently parallelize graph algorithms.

Some of them most closely related to our work are discussed here.

Parallel PLL: Multiple parallel PLL approaches [19, 20, 42, 58]

allow processing multiple vertices simultaneously. However, they

cannot produce the same (and compact) label sets as the origi-

nal PLL. They also cannot process large graphs as in our imple-

mentation. For instance, PLaNT [42] produces a superset of labels

initially, so it needs label cleaning after construction. Dong et al.
combine intra-node parallelism (as proposed in original PLL pa-

per [3]) and inter-node parallelism – the latter not leading to the

same results as the sequential computation. We are also made aware

that Li et al. propose Parallel Shortest-distance Labeling (PSL) that

replaces PLL’s node-order dependency with a shortest-distance

dependence [43]. Our basic vertex-centric algorithm, VC-PLL [33],

is discovered independently as PSL. Moreover, we provide linear

algebra analysis and combine the vertex-centric model and batched

design to guarantee a smaller memory access cost than PLL.

Graph Processing Paradigms: Batch processing is a general idea
that is also explored within the context of graph processing [76].

However, this workwas focused on addressing problems like skewed

distributions and high density. The use of block processing to im-

prove the 2-hop labeling approach is original to our work. From

the theoretical side, we can prove that it reduces the number of

distance check operations (as shown in supplementary materials

aforementioned). It also significantly improves the data locality of

remote distance check operations and restricts the overall memory

usage.

Our BVC-PLL adopts a synchronous paradigm (Bulk Synchronous

Parallel (BSP) execution [73]) because its key designs to accelerating

the batched processing (like bit operation, and compact data struc-

ture) rely on this property. It can be beneficial to extend BVC-PLL

to incorporate asynchronous execution ideas (like k-level asynchro-
nous (KLA) [21], and synchronization-avoiding algorithms [22]) to

further improve its scalability and performance in the future.

Finally, as we mentioned, new graph processing frameworks

(like GraphBLAS(T) [37] and GraphMat [72]) exploit efficient im-

plementations of SpMV and SpGEMM fromHPC community. As we

also explained, due to the complicated masking operator it appears

inefficient to implement BVC-PLL in this linear algebra form.

Graph Framework Implementations:Many popular graph pro-

cessing engines and frameworks have been developed in recent

years. Some of them focus on processing in-memory datasets on one

node (e.g., Galois [52], Ligra [68], Polymer [77], GraphGrind [71],

etc.), or disk-resident datasets on one node, (Graphchi [41], X-

Stream [61], etc.) or performing distributed memory processing

(Pregel [49], GraphLab [46], PowerGraph [27], etc.). The in-memory

frameworks focus on improving shared memory parallelism and

addressing NUMA issues, the out-of-core ones aim to reduce disk

traffic, and the distributed ones concern how to efficiently partition

graphs, store partitions on multiple machines, and perform low-

cost communication. Many graph frameworks are also designed for

GPUs [23, 28, 29, 31, 39, 45, 50, 51, 54, 66, 74, 79, 80]. For instance,

works like CuSha [39] and Gunrock [74] target on load balance

and memory coalescing optimizations, while works like GraphRe-

duce [66] and Graphie [28] focus on reducing CPU-GPU traffic

for the processing of large graphs not fitting in the GPU memory.

Certain efforts were also specific to Xeon Phi [5, 11, 32, 56, 69]. In

addition, certain graph processing frameworks are designed for hy-

brid CPU and coprocessors [10, 16, 26, 30, 47, 65]. Moreover, certain

compiler-based efforts offer either high-level intermediate represen-

tations or domain-specific languages to support high-performance

and high-productivity graph programming, such as GraphIt [78]

on CPU (and, similarly, IrGL [54] on GPU). To the best of our

knowledge, PLL has not been the target of any of these efforts, and

there is no previous work supporting a scalable and exact parallel

implementation of PLL.

8 CONCLUSION
In this paper, we proposed VC-PLL, which, to the best of our knowl-

edge, is the first scalable parallelization of Pruned Landmark Label-

ing (PLL) that is able to produce the same result as the sequential

method. We have achieved this by developing new insights that

enable mapping the algorithm to a vertex-centric model. We also

introduced a new batched execution mechanism for VC-PLL to

better support message filtering and remote memory access. The

resulting BVC-PLL algorithm can even run faster than the original

PLL sequentially. Our experimental results further demonstrate

the parallel efficiency and scalability of BVC-PLL and shows its

superiority over the most recent ParaPLL algorithms on weighted

graphs (using a straightforward extension of BVC-PLL). In our fu-

ture work, we plan to further investigate how to optimize BVC-PLL

on weighted graphs and how to extend it for out-of-core graphs.

We also plan to investigate the possibility of implementing the

cost-saving mechanism in BVC-PLL for other graph algorithms.

ACKNOWLEDGMENTS
The authors acknowledge William & Mary Research Computing

(https://www.wm.edu/it/rc) for providing computational resources

https://www.wm.edu/it/rc

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Ruoming Jin, et al.

and/or technical support that have contributed to the results re-

ported within this paper. The work was also partially supported by

the Ohio Supercomputer Center under Grant no. PGS0218.

REFERENCES
[1] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.

2011. A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks.

In Experimental Algorithms, Panos M. Pardalos and Steffen Rebennack (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 230–241.

[2] Takuya Akiba. 2014. Pruned Labeling Algorithms: Fast, Exact, Dynamic, Simple

and General Indexing Scheme for Shortest-Path Queries. In Proceedings of the 23rd
International Conference on World Wide Web (WWW ’14 Companion). Association
for Computing Machinery, New York, NY, USA, 1339–1340. https://doi.org/10.

1145/2567948.2582735

[3] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast Exact Shortest-

Path Distance Queries on Large Networks by Pruned Landmark Labeling. In

Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data. ACM, 349–360.

[4] Maxim Babenko, Andrew V. Goldberg, Haim Kaplan, Ruslan Savchenko, and

Mathias Weller. 2015. On the Complexity of Hub Labeling (Extended Abstract). In

Mathematical Foundations of Computer Science 2015. Springer Berlin Heidelberg,

62–74.

[5] Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten Hoefler. 2017.

SlimSell: A Vectorizable Graph Representation for Breadth-First Search. In Parallel
and Distributed Processing Symposium (IPDPS), 2017 IEEE International. IEEE, 32–
41.

[6] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten

Hoefler. 2017. To Push or To Pull: On Reducing Communication and Synchroniza-

tion in Graph Computations. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing. ACM, 93–104.

[7] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. The Journal of
Mathematical Sociology 25, 2 (2001), 163–177. https://doi.org/10.1080/0022250X.

2001.9990249 arXiv:https://doi.org/10.1080/0022250X.2001.9990249

[8] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning Graph Repre-

sentations with Global Structural Information. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. ACM,

891–900.

[9] Tim Carnes, Chandrashekhar Nagarajan, Stefan M. Wild, and Anke van Zuylen.

2007. Maximizing Influence in a Competitive Social Network: A Follower’s

Perspective. In Proceedings of the Ninth International Conference on Electronic
Commerce (ICEC ’07). Association for Computing Machinery, New York, NY, USA,

351–360. https://doi.org/10.1145/1282100.1282167

[10] Linchuan Chen, Xin Huo, Bin Ren, Surabhi Jain, and Gagan Agrawal. 2015.

Efficient and simplified parallel graph processing over cpu and mic. In 2015 IEEE
International Parallel and Distributed Processing Symposium. IEEE, 819–828.

[11] Linchuan Chen, Peng Jiang, and Gagan Agrawal. 2016. Exploiting Recent SIMD

Architectural Advances for Irregular Applications. In Proceedings of the 2016
International Symposium on Code Generation and Optimization. ACM, 47–58.

[12] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, and S Yu Philip. 2006.

Fast computation of reachability labeling for large graphs. In International Con-
ference on Extending Database Technology. Springer, 961–979.

[13] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, and Philip S Yu. 2008.

Fast computing reachability labelings for large graphs with high compression

rate. In Proceedings of the 11th international conference on Extending database
technology: Advances in database technology. 193–204.

[14] Jiefeng Cheng, Jeffrey Xu Yu, and Philip S. Yu. 2011. Graph Pattern Matching: A

Join/Semijoin Approach. IEEE Trans. Knowl. Data Eng. 23, 7 (2011), 1006–1021.
[15] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reachability and

distance queries via 2-hop labels. In Proceedings of the 13th annual ACM-SIAM
Symposium on Discrete algorithms. 937–946.

[16] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,

Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A Communication-

Optimizing Substrate for Distributed Heterogeneous Graph Analytics. In Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 752–768.

[17] Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck. 2014.

Robust exact distance queries on massive networks. Microsoft Research, USA,
Tech. Rep 2 (2014).

[18] Q. Dong, K. Lakhotia, H. Zeng, R. Karman, V. Prasanna, and G. Seetharaman.

2018. A Fast and Efficient Parallel Algorithm for Pruned Landmark Labeling. In

2018 IEEE High Performance extreme Computing Conference (HPEC). 1–7. https:

//doi.org/10.1109/HPEC.2018.8547548

[19] Qing Dong, Kartik Lakhotia, Hanqing Zeng, Rajgopal Karman, Viktor Prasanna,

and Guna Seetharaman. 2018. A fast and efficient parallel algorithm for pruned

landmark labeling. In 2018 IEEE High Performance extreme Computing Conference
(HPEC). IEEE, 1–7.

[20] Damir Ferizovic. 2015. Parallel Pruned Landmark Labeling for Shortest Path Queries
on Unit-Weight Networks. Ph.D. Dissertation. National Research Center.

[21] Adam Fidel, Nancy M Amato, Lawrence Rauchwerger, et al. 2014. Kla: A new

algorithmic paradigm for parallel graph computations. In 2014 23rd International
Conference on Parallel Architecture and Compilation Techniques (PACT). IEEE,
27–38.

[22] Jesun Sahariar Firoz, Marcin Zalewski, Thejaka Kanewala, and Andrew Lums-

daine. 2018. Synchronization-avoiding graph algorithms. In 2018 IEEE 25th
International Conference on High Performance Computing (HiPC). IEEE, 52–61.

[23] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang Liu. 2019. XBFS: eXploring Runtime

Optimizations for Breadth-First Search on GPUs. In Proceedings of the 28th In-
ternational Symposium on High-Performance Parallel and Distributed Computing.
ACM, 121–131.

[24] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008.

Contraction hierarchies: faster and simpler hierarchical routing in road networks.

In Proceedings of the 7th international conference on Experimental algorithms.
319–333.

[25] Alan George, John R Gilbert, and Joseph WH Liu. 2012. Graph theory and sparse
matrix computation. Vol. 56. Springer Science & Business Media.

[26] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu Santos-Neto, and Matei Ripeanu.

2012. A Yoke of Oxen and a Thousand Chickens for Heavy Lifting Graph Pro-

cessing. In Proceedings of the 21st international conference on Parallel architectures
and compilation techniques, PACT. ACM, 345–354.

[27] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs..

In OSDI, Vol. 12. 2.
[28] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. 2017. Graphie: Large-

Scale Asynchronous Graph Traversals on Just a GPU. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT),. IEEE,
233–245.

[29] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, and P Sadayappan.

2017. MultiGraph: Efficient Graph Processing on GPUs. In Parallel Architectures
and Compilation Techniques (PACT), 2017 26th International Conference on. IEEE,
27–40.

[30] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. 2011. Efficient Parallel

Graph Exploration on Multi-core CPU and GPU. In 2011 International Conference
on Parallel Architectures and Compilation Techniques (PACT). IEEE, 78–88.

[31] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and

Alex Aiken. 2017. A distributed multi-gpu system for fast graph processing.

Proceedings of the VLDB Endowment 11, 3 (2017), 297–310.
[32] Peng Jiang, Linchuan Chen, and Gagan Agrawal. 2016. Reusing Data Reorgani-

zation for Efficient SIMD Parallelization of Adaptive Irregular Applications. In

Proceedings of the 2016 International Conference on Supercomputing. ACM, 16.

[33] Ruoming Jin, Zhen Peng, Wendell Wu, Feodor Dragan, Gagan Agrawal, and Bin

Ren. 2019. Pruned Landmark Labeling Meets Vertex Centric Computation: A

Surprisingly Happy Marriage! arXiv preprint arXiv:1906.12018 (2019).
[34] R. Jin, N. Ruan, Y. Xiang, and V. E. Lee. 2012. A highway-centric labeling approach

for answering distance queries on large sparse graphs. In SIGMOD.
[35] Ruoming Jin, Ning Ruan, Bo You, and Haixun Wang. 2013. Hub-Accelerator:

Fast and Exact Shortest Path Computation in Large Social Networks. CoRR
abs/1305.0507 (2013).

[36] Ruoming Jin and Guan Wang. 2013. Simple, fast, and scalable reachability oracle.

Proceedings of the VLDB Endowment 6, 14 (2013), 1978–1989.
[37] Jeremy Kepner, Peter Aaltonen, David A. Bader, Aydin Buluç, Franz Franchetti,

John R. Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Hen-

ning Meyerhenke, Scott McMillan, Carl Yang, John D. Owens, Marcin Za-

lewski, Timothy G. Mattson, and José E. Moreira. 2016. Mathematical foun-

dations of the GraphBLAS. In 2016 IEEE High Performance Extreme Comput-
ing Conference, HPEC 2016, Waltham, MA, USA, September 13-15, 2016. 1–9.
https://doi.org/10.1109/HPEC.2016.7761646

[38] Jeremy Kepner and John Gilbert. 2011. Graph Algorithms in the Language of
Linear Algebra. Vol. 22. SIAM.

[39] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. 2014. CuSha:

Vertex-centric Graph Processing on GPUs. In Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing. ACM, 239–

252.

[40] Seongyun Ko and Wook-Shin Han. 2018. TurboGraph++: A Scalable and Fast

Graph Analytics System. In Proceedings of the 2018 International Conference on
Management of Data. ACM, 395–410.

[41] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. 2012. Graphchi: Large-Scale

Graph Computation on Just a PC. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). USENIX.

[42] Kartik Lakhotia, Rajgopal Kannan, Qing Dong, and Viktor Prasanna. 2019. Plant-

ing Trees for Scalable and Efficient Canonical Hub Labeling. Proc. VLDB Endow.
13, 4 (Dec. 2019), 492–505. https://doi.org/10.14778/3372716.3372722

[43] Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2019.

Scaling Distance Labeling on Small-World Networks. In Proceedings of the 2019
International Conference on Management of Data (SIGMOD ’19). Association for

https://doi.org/10.1145/2567948.2582735
https://doi.org/10.1145/2567948.2582735
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1080/0022250X.2001.9990249
http://arxiv.org/abs/https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1145/1282100.1282167
https://doi.org/10.1109/HPEC.2018.8547548
https://doi.org/10.1109/HPEC.2018.8547548
https://doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.14778/3372716.3372722

BVC-PLL ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Computing Machinery, New York, NY, USA, 1060–1077. https://doi.org/10.1145/

3299869.3319877

[44] Ye Li, Man Lung Yiu, Ngai Meng Kou, et al. 2017. An experimental study on hub

labeling based shortest path algorithms. Proceedings of the VLDB Endowment 11,
4 (2017), 445–457.

[45] Hang Liu and H Howie Huang. 2018. Simd-x: Programming and processing of

graph algorithms on gpus. arXiv preprint arXiv:1812.04070 (2018).
[46] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,

and Joseph Hellerstein. 2014. Graphlab: A New Framework for Parallel Machine

Learning. arXiv preprint arXiv:1408.2041 (2014).
[47] SteffenMaass, ChangwooMin, Sanidhya Kashyap,Woonhak Kang,MohanKumar,

and Taesoo Kim. 2017. Mosaic: Processing a Trillion-Edge Graph on a Single

Machine. In Proceedings of the Twelfth European Conference on Computer Systems.
ACM, 527–543.

[48] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-

scale graph processing. In Proceedings of the 2010 international conference on
Management of data (SIGMOD ’10).

[49] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-

scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 135–146.

[50] Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. 2019. A pattern based

algorithmic autotuner for graph processing on GPUs. In Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming. 201–213.

[51] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU

Graph Traversal. In ACM SIGPLAN Notices, Vol. 47. ACM, 117–128.

[52] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight

Infrastructure for Graph Analytics. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 456–471.

[53] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu. 2018.

When Hierarchy Meets 2-Hop-Labeling: Efficient Shortest Distance Queries on

RoadNetworks. In Proceedings of the 2018 International Conference onManagement
of Data (SIGMOD ’18). 709–724.

[54] Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput Optimiza-

tion of Graph Algorithms on GPUs. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, 1–19.

[55] Scott Beamer Krste Asanovic David Patterson. 2012. Direction-Optimizing

Breadth-First Search. SC12, November (2012), 10–16.
[56] Zhen Peng, Alexander Powell, Bo Wu, Tekin Bicer, and Bin Ren. 2018. GraphPhi:

Efficient Parallel Graph Processing on Emerging Throughput-oriented Architec-

tures. In 2018 International Conference on Parallel Architecture and Compilation
(PACT). ACM.

[57] Qiongwen Xu, Xu Zhang, Jin Zhao, Xin Wang, and T. Wolf. 2016. Fast shortest-

path queries on large-scale graphs. In 2016 IEEE 24th International Conference on
Network Protocols (ICNP). IEEE, 1–10.

[58] Kun Qiu, Yuanyang Zhu, Jing Yuan, Jin Zhao, Xin Wang, and Tilman Wolf. 2018.

ParaPLL: Fast Parallel Shortest-path Distance Query on Large-scale Weighted

Graphs. In Proceedings of the 47th International Conference on Parallel Processing.
ACM, 2.

[59] Abdul Quamar, Amol Deshpande, and Jimmy Lin. 2016. NScale: Neighborhood-

Centric Large-Scale Graph Analytics in the Cloud. The VLDB Journal–The Inter-
national Journal on Very Large Data Bases 25, 2 (2016), 125–150.

[60] Neil Robertson and Paul D. Seymour. 1986. Graph minors. II. Algorithmic aspects

of tree-width. Journal of algorithms 7, 3 (1986), 309–322.
[61] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-

centric Graph Processing using Streaming Partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. ACM, 472–488.

[62] Jagan Sankaranarayanan, Houman Alborzi, and Hanan Samet. 2006. Distance join

queries on spatial networks. In Proceedings of the 14th annual ACM international

symposium on Advances in geographic information systems (GIS ’06).
[63] J. Sankaranarayanan, H. Samet, and H. Alborzi. 2009. Path oracles for spatial

networks. PVLDB 2 (August 2009). Issue 1.

[64] Ralf Schenkel, Anja Theobald, and Gerhard Weikum. 2004. HOPI: An Efficient

Connection Index for Complex XML Document Collections. In Advances in
Database Technology - EDBT 2004, Elisa Bertino, Stavros Christodoulakis, Dimitris

Plexousakis, Vassilis Christophides, Manolis Koubarakis, Klemens Böhm, and

Elena Ferrari (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 237–255.

[65] Robert Searles, Stephen Herbein, and Sunita Chandrasekaran. 2016. A portable,

high-level graph analytics framework targeting distributed, heterogeneous sys-

tems. In 2016 Third Workshop on Accelerator Programming Using Directives (WAC-
CPD). IEEE, 79–88.

[66] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten Schwan.

2015. GraphReduce: Processing Large-scale Graphs onAccelerator-based Systems.

In 2015 SC-International Conference for High Performance Computing, Networking,
Storage and Analysis, SC. IEEE, 1–12.

[67] P. Shiralkar, A. Flammini, F. Menczer, and G. L. Ciampaglia. 2017. Finding Streams

in Knowledge Graphs to Support Fact Checking. In 2017 IEEE International Con-
ference on Data Mining (ICDM). 859–864. https://doi.org/10.1109/ICDM.2017.105

[68] Julian Shun and Guy E Blelloch. 2013. Ligra: A Lightweight Graph Processing

Framework for Shared Memory. In ACM Sigplan Notices, Vol. 48. ACM, 135–146.

[69] Milan Stanic, Oscar Palomar, Ivan Ratkovic, Milovan Duric, Osman Unsal, Adrian

Cristal, and Mateo Valero. 2014. Evaluation of vectorization potential of graph500

on intel’s xeon phi. In 2014 International Conference on High Performance Com-
puting & Simulation (HPCS). IEEE, 47–54.

[70] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. 2017. Graph-

Grind: Addressing Load Imbalance of Graph Partitioning. In Proceedings of
the International Conference on Supercomputing (ICS ’17). Association for Com-

puting Machinery, New York, NY, USA, Article Article 16, 10 pages. https:

//doi.org/10.1145/3079079.3079097

[71] Jiawen Sun, Hans Vandierendonck, and Dimitrios S Nikolopoulos. 2017. Graph-

Grind: addressing load imbalance of graph partitioning. In Proceedings of the
International Conference on Supercomputing. 1–10.

[72] Narayanan Sundaram, Nadathur Rajagopalan Satish, Md Mostofa Ali Patwary,

Subramanya R Dulloor, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep

Dubey. 2015. Graphmat: High performance graph analytics made productive.

arXiv preprint arXiv:1503.07241 (2015).
[73] Leslie G Valiant. 1990. A Bridging Model for Parallel Computation. Commun.

ACM 33, 8 (1990), 103–111.

[74] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and

John D Owens. 2016. Gunrock: A High-Performance Graph Processing Library

on the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM, 11.

[75] Mathias Weller. 2014. Optimal Hub Labeling is NP-complete. CoRR abs/1407.8373

(2014).

[76] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-centric

framework for distributed computation on real-world graphs. Proceedings of the
VLDB Endowment 7, 14 (2014), 1981–1992.

[77] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-Aware Graph-

Structured Analytics. ACM SIGPLAN Notices 50, 8 (2015), 183–193.
[78] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,

and Saman Amarasinghe. 2018. GraphIt: A High-Performance DSL for Graph

Analytics. arXiv preprint arXiv:1805.00923 (2018).
[79] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified Graph Processing

on GPUs. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2014),

1543–1552.

[80] Wenyong Zhong, Jianhua Sun, Hao Chen, Jun Xiao, Zhiwen Chen, Chang Cheng,

and Xuanhua Shi. 2016. Optimizing graph processing on gpus. IEEE Transactions
on Parallel and Distributed Systems 28, 4 (2016), 1149–1162.

[81] Lei Zou, Lei Chen, and M. Tamer Özsu. 2009. Distance-join: pattern match query

in a large graph database. Proc. VLDB Endow. 2, 1 (Aug. 2009), 886–897.

https://doi.org/10.1145/3299869.3319877
https://doi.org/10.1145/3299869.3319877
https://doi.org/10.1109/ICDM.2017.105
https://doi.org/10.1145/3079079.3079097
https://doi.org/10.1145/3079079.3079097

	Abstract
	1 Introduction
	2 2-hop Labeling and PLL
	2.1 2-Hop Labeling
	2.2 A Linear Algebra View of PLL

	3 Parallelization of PLL
	3.1 Vertex-Centric (and Other) Models
	3.2 Vertex-Centric Approach and PLL
	3.3 Vertex-Centric Parallel Implementation
	3.4 Theoretical Properties
	3.5 Limitations of VC-PLL

	4 Batched Vertex-Centric Algorithm
	5 Variants and Parallel Implement.
	5.1 Generalization
	5.2 Parallel Implementation Issues

	6 Evaluation
	6.1 Experimental Setup
	6.2 BVC-PLL vs PLL and Shared Memory Scalability
	6.3 Distributed Memory Results
	6.4 Test on Large Graphs w/ Billions of Edges
	6.5 Extension to Weighted Graphs and SIMD

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

