
ATMem: Adaptive Data Placement in Graph
Applications on Heterogeneous Memories

Yu Chen
Department of Computer Science

College of William & Mary
Williamsburg, VA, USA
ychen39@email.wm.edu

Ivy B. Peng
Lawrence Livermore National

Laboratory
Livermore, CA, USA
peng8@llnl.gov

Zhen Peng
Department of Computer Science

College of William & Mary
Williamsburg, VA, USA
zpeng01@email.wm.edu

Xu Liu
Department of Computer Science

College of William & Mary
Williamsburg, VA, USA

xl10@cs.wm.edu

Bin Ren
Department of Computer Science

College of William & Mary
Williamsburg, VA, USA

bren@cs.wm.edu

Abstract
Active development in new memory devices, such as non-
volatile memories and high-bandwidth memories, brings
heterogeneous memory systems (HMS) as a promising solu-
tion for implementing large-scale memory systems with cost,
area, and power limitations. Typical HMS consists of a small-
capacity high-performancememory and a large-capacity low-
performance memory. Data placement on such systems plays
a critical role in performance optimization. Existing efforts
have explored coarse-grained data placement in applications
with dense data structures; however, a thorough study of
applications that are based on graph data structures is still
missing.
This work proposes ATMem—a runtime framework for

adaptive granularity data placement optimization in graph
applications. ATMem consists of a lightweight profiler, an
analyzer using a novel m-ary tree-based strategy to iden-
tify sampled and estimated critical data chunks, and a high-
bandwidth migration mechanism using a multi-stage multi-
threaded approach. ATMem is evaluated in five applica-
tions on two HMS hardware, including the Intel Optane
byte-addressable NVM and MCDRAM. Experimental re-
sults show that ATMem selects 5%-18% data to be placed
on high-performance memory and achieves an average of
1.7×-3.4× speedup on NVM-DRAM and 1.2×-2.0× speedup
on MCDRAM-DRAM, over the baseline that places all data
on the large-capacity memory. On NVM-DRAM, ATMem

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
CGO ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7047-9/20/02. . . $15.00
https://doi.org/10.1145/3368826.3377922

achieves performance comparable to a full-DRAM system
with as low as 9%-54% slowdown.

CCS Concepts • General and reference → Perfor-
mance; • Software and its engineering → Develop-
ment frameworks and environments.

Keywords Heterogeneous Memory Systems, Data Place-
ment, Graph Application

ACM Reference Format:
Yu Chen, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren. 2020. AT-
Mem: Adaptive Data Placement in Graph Applications on Heteroge-
neous Memories. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization (CGO ’20), Feb-
ruary 22–26, 2020, San Diego, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3368826.3377922

1 Introduction
Memory technologies are advancing fast, and new memory
devices that feature high-performance, high-density, or low-
power are emerging [13–15]. Recently, 3D-stackedmemories,
such as Hybrid Memory Cube (HMC) [5] and HBM [14],
and byte-addressable non-volatile memories (NVM) have
become commercially available. These new memory devices,
together with the conventional DRAM technology, make
heterogeneous memory system (HMS) a feasible solution for
building large-scale systems under the limited area, power,
and cost budget.
A typical HMS consists of a high-performance memory

and a large-capacity memory, where the high-performance
memory has a smaller capacity, and yields higher memory
bandwidth and/or lower memory latency than the large-
capacity memory. Consider two popular HMS examples. The
2nd Gen Intel R○ Xeon R○ Scalable processor supports up to
6 TB Optane byte-addressable NVM and up to 384 GB DDR4
DRAM on a single machine [25]. Another example is the
Intel Knights Landing (KNL) processor with up to 192 GB

293

https://doi.org/10.1145/3368826.3377922
https://doi.org/10.1145/3368826.3377922

CGO ’20, February 22–26, 2020, San Diego, CA, USA Yu Chen, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren

DRAM and 16 GB MCDRAM [31]. While DRAM is the high-
performance memory compared to the Intel Optane NVM,
providing three times bandwidth of NVM, it becomes the
high-capacity memory on KNL, where MCDRAM provides
nearly four times bandwidth of DRAM.
On HMS, data placement plays an essential role in per-

formance optimization. There have been extensive efforts
for tackling this challenge [6, 7, 10, 19, 23]. The general opti-
mization strategy tries to place critical data onto the high-
performance memory. Some specialized optimization also
tries to utilize memory bandwidth on both memories con-
currently, which is only feasible on architectures providing
independent memory channels to each memory. State-of-the-
art optimization techniques have explored coarse-grained
solutions that place whole data structures onto the high-
performance memory [6, 7, 10, 19, 23, 27, 33, 34]. However,
these approaches are inefficient for graph applications—a
more challenging class of applications that have massive
data structures with skewed access patterns.
Graph applications play significant roles in a spectrum

of fields ranging from bioinformatics, scientific computing,
social network, to machine learning and data mining. The
current solutions face two main challenges. First, whole data
structure placement might move non-critical data regions
with few reuses, e.g. the data associated with low-degree
vertices in graph processing, to high-performance memory,
resulting in a waste of scarce resource. For instance, applica-
tions running on servers need to share all resources, resulting
in even smaller high-performance memory available to an
application. Second, due to the data-driven behavior of graph
applications, effective data placement largely depends on the
feature of input data, i.e., the sparsity and the structure of a
graph, and also the query at each run.

Relying on the application programmer to explicitly man-
age data placement is only feasible at a coarse granularity, i.e.,
changing the placement of a whole data structure. Even so, it
is a tedious and error-prone process, especially for large-scale
applications. Moreover, a statically managed placement may
not be portable when applications are running on a different
system. Thus, an optimal decisionmay include feedback from
the application behavior on the underlying hardware into
consideration. These challenges require a dynamic solution
and fine-grained data placement scheme to address.

This paper proposes ATMem as a data placement optimiza-
tion framework to tackle these challenges in graph appli-
cations. ATMem enables adaptive granularity in managing
data placement on HMS with three novel designs. First, AT-
Mem enables adaptive data chunk profiling for subsequent
partial data structure placement. The ultimate goal is to
achieve the maximum performance gain per byte, i.e., im-
proving fast memory utilization by only placing critical data
regions that yield the highest performance gains on it. This
is especially meaningful for server machines with multiple
applications competing for precious fast memory. Second,

ATMem supports lightweight sampling-based profiling and
more importantly, enhances the analysis of sampling results
with a novel tree-based information patching procedure to
promote prospective data chunks into the critical category.
Third, ATMem supports high-bandwidth data migration be-
tween memories at the application level without changes to
operating systems or hardware.

The main contributions of this work are as follows:
• It proposes a lightweight profiler that uses hardware
sampling to identify access patterns to data chunks of
adaptive granularity.

• It employs a local relative ranking strategy to select
critical regions inside data structures based on sam-
pling results.

• It employs a novel m-ary tree-based strategy to pro-
mote prospective data chunks into critical based on a
global relative adaption.

• It designs a multi-stage multi-threaded migration strat-
egy at the application level to enable high-bandwidth
data migration and reduce TLB misses.

• We provide the implementation in a framework called
ATMem and evaluate in five applications on two
HMS hardware, including the state-of-the-art byte-
addressable NVM.

ATMem is evaluated in five graph applications on real
NVM-DRAM and MCDRAM-DRAM hardware. Our evalua-
tion results show that by selecting 5%-18% data onto high-
performance memory, ATMem achieves an average of 1.7×-
3.4× speedup on NVM-DRAM and 1.2×-2.0× speedup on
MCDRAM-DRAM, compared to the baseline that places all
data on the large-capacity memory. On NVM-DRAM, AT-
Mem achieves performance comparable to a full-DRAM sys-
temwith as low as 9%-54%. ATMem also enables 2.07×-5.32×
faster data migration than the system service.

2 Background and Motivation
This section introduces the architecture of systems under
consideration, the target workload, and the limitations of
existing solutions. It also presents a preliminary study on
real hardware (including the state-of-art Intel Optane byte-
addressable NVM).

2.1 Heterogeneous Memory Systems
This work considers heterogeneous memory systems that
place a small-capacity high-performance memory side-by-
side to a low-performance large-capacity memory. The latest
2nd Gen Intel R○ Xeon R○ Scalable processor can work with up
to 6 TB Optane byte-addressable NVM of 39 GB/s bandwidth
and 384 GB DRAM of 104 GB/s bandwidth [25]. Another
example is the Intel Knights Landing (KNL) processor that
has 96 GB DRAM next to 16 GB MCDRAM of 400 GB/s
bandwidth [31]. We conduct preliminary studies on real
hardware and find that application performance on different

294

ATMem CGO ’20, February 22–26, 2020, San Diego, CA, USA

0	

2	

4	

6	

8	

10	

12	

BFS	 PageRank	 SSSP	 CC	 BC	

N
or
m
al
iz
ed

	T
im

e	
(x
)	

pokec	
twitter	
rmat24	
rmat27	
friendster	

a Normalized execution time with data placement on the Intel
Optane byte-addressable NVM as to that with data on DRAM.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

BFS	 PageRank	 SSSP	 CC	 BC	

N
or
m
al
iz
ed

	T
im

e	
(x
)	

pokec	
twitter	
rmat24	
rmat27	
friendster	

b Normalized execution time with data placement on DRAM as to
that with data preferably placed on MCDRAM.

Figure 1. Compare the performance of five applications on
two HMS using different data placement for five datasets.

memories can have a much larger gap than that predicted
by emulators [9, 26, 34].
Figure 1a and 1b report the slowdown when data are

placed on the large-capacity memory compared to that on
high-performance memory. The Intel Optane NVM has three
times latency and 38% bandwidth of DRAM [25]. However,
application performance could slow down by up to 10×
(Figure 1a). MCDRAM has a limited capacity and system
solutions like ‘numactl -p’ might choose less critical data
onto high-performance memory, reducing performance im-
provement. These results highlight prospective benefits from
fine-grained data placement that selects critical regions into
high-performance memory.

Objective I: our work identifies critical data chunks inside
a data object and only migrates them onto high-performance
memory for efficient memory utilization.

2.2 Graph Applications
Graph applications, such as data analytic workload, often
exhibit data-driven access pattern and have low data local-
ity. Contemporary computer systems use highly optimized
caches to keep frequently used data close to processing units.
Such optimization, however, has shown its inadequacy for
graph applications [24]. With low data reuse, the overhead
of managing hardware cache might even hurt application

performance. The opportunity in optimizing data placement
stems from dense (hot) regions and sparse (cold) regions in
data that drive accesses. Our work identifies these regions
dynamically and manages them in the high-performance
memory explicitly at the application level.

The application-level approach requires to address several
challenges, specifically compared to system-level or architec-
ture solutions. First, it lacks the full statistics of page accesses
as the operating system have. Second, it cannot flexibly mod-
ify the hardware units on an existing platform. Thus, ATMem
utilizes the widely available hardware counters to develop a
sampling profiler for estimating dense regions in data. Unlike
a system solution that usually operates at page-size granu-
larity, ATMem adapts the size of data chunks, i.e., the basic
unit of a data structure, to reduce metadata and migration
overhead. Moreover, a sampling-based approach has to trade
off overhead and accuracy. Even a high-frequency sampling
approach cannot guarantee to capture all the information.
ATMem proposes a tree-based clustering strategy to “patch
up” information that is likely missed due to sampling.

Objective II: our work uses low-overhead sampling pro-
filing and addresses possible information loss in samples to
estimate critical data regions.

2.3 Migration Mechanism
On state-of-the-art heterogeneous memory systems, differ-
ent memories, e.g., NVM and DRAM, are exposed to CPU as
separate non-uniformmemory access (NUMA) nodes [25]. In
this way, traditional system services for NUMA control, i.e.,
mbind, can be used for migrating data from one memory to
another. As pointed out by previous works [21, 35], the cur-
rent system service is inefficient for heterogeneous memory
systems. The migration mechanism is often single-threaded,
which cannot exploit the high bandwidth supported by the
hardware. Also, the data movement procedure is long and
blocking, with substantial overhead spent for enforcing cor-
rectness for system-wide reliability. An application-level ap-
proach has the opportunity to bypass some of these overhead
given sufficient application knowledge. Another side-effect
from the standard service is the increased TLB misses after
migration. While previous works have proposed solutions in
the operating systems or hardware, we develop a multi-stage
multi-threaded migration strategy to tackle these challenges
at the application level on an existing platform.

Objective III: our work improves data migration between
memories at application level without changes in hardware or
operating systems.

3 Overview of ATMem
ATMem consists of three main components (as illustrated
in Figure 2): a profiler, an analyzer, and an optimizer. First,
ATMem profiler employs low-overhead hardware-counter
based sampling to learn access patterns in an application.

295

CGO ’20, February 22–26, 2020, San Diego, CA, USA Yu Chen, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren

API	 int	*d0=	atmem_malloc(s0);	
int	*d1=	atmem_malloc(s1);	
compute();	
...	

d0	

Sampling	memory	access	from	hardware	counters	

Profiler	

Tree-based	global	promotion	estimates	prospective	data	chunks	

Sampled	critical	data	chunks	
Estimated	prospective	data	chunks	
	

Analyzer	

Multi-threaded	Migration	

Optimizer	

Large-capacity	memory	

High-performance	memory	

...	

9	

4	 2	 3	

2	 1	 1	 1	 0	 1	 2	 1	 0	
...	d1	

...	

...	

d0	

d1	

d1	

...	

Access	Pattern	

Re-allocate	+	Remapping	

...	

Figure 2. The overview of ATMem framework.

Second, based on the collected samples, ATMem analyzer
identifies critical data chunks (of adaptive granularity) by a
global relative ranking scheme. ATMem analyzer addresses
one common challenge in sampling-based approaches, i.e.,
the loss in sampled information. The analyzer utilizes an m-
ary tree-based strategy to “patch up” information to estimate
potentially critical data chunks. Finally, ATMem optimizer
performs a multi-stage multi-threaded migration to move
both sampled and estimated critical data chunks onto high-
performance memory. Section 4 introduces the design of
these components in details.

4 Design of ATMem
This section describes the design of ATMem in identify-
ing critical data regions of adaptive granularity, predicting
prospective data regions, and migrating data regions at high
bandwidth between memories.

4.1 Adaptive Data Chunks
The basic unit of data management in ATMem is called
data chunk. Data chunk is an adaptive unit such that a
data object (DOi) is composed of N equal-sized data chunks
(DCi j , j = 1..N), while data chunks in different data objects
can have different sizes. Figure 2 (Profiler panel) illustrates
two chunk sizes in d0 and d1, respectively. ATMem adjusts
the granularity of a data chunk DCi j based on the size of
the data object DOi . This adaptive data chunk design has
two main advantages. First, it breaks down a (potentially)
large data object into finer-grained segments. By comparing
the priority of data chunks inside a data object, ATMem can
separate critical data chunks from non-critical data chunks.
These critical data chunks correspond to dense (hot) regions
of a data structure that has non-uniform access patterns,
which is common in irregular applications. Second, ATMem
can control the profiling overhead by managing the num-
ber of data chunks, i.e., coarsening the granularity of data
chunks. Each collected sample in the profiling stage will be
associated with a data chunk. Thus, changing the granularity
of data chunks affects the metadata and profiling overhead
directly.

4.2 Hybrid Local Selection
The first stage of ATMem analyzer employs a local relative
ranking to select critical data chunks for each data object.
These selected data chunks are called sampled selection to be
distinguished from the estimated selection in a later stage.
Equation 1 quantifies the metric of local priority (PRlocal)
for a data chunk DCi j that represents the j-th data chunk in
data object DOi . ATMem uses the number of missed reads
from the last-level cache LLCmr as an indicator of priority
and normalizes it to the size of a data chunk (Size). Note that
the normalization is necessary for global relative ranking
among different data objects in a later stage.

PRlocal (DCi j) =
LLCmr (DCi j)

Size(DCi j)
(1)

θ (DOi) = max(Pn ,α max PR,min PR/Freqsample) (2)

CAT (DCi j) =

{
1, if PRlocal (DCi j) ≥ θ

0, otherwise
(3)

ATMem combines the conventional top-N selection with a
derivative-based classification to select the threshold value of
θ . In Equation 3, data chunks with priority score (PR) higher
than the threshold θ has categorization (CAT) 1, i.e., critical.
A top-N selection chooses a fixed ratio of data chunks that
have the highest PRlocal score in a data object, i.e., the n-th
percentile Pn in Equation 2. However, a fixed selection is
inefficient in two scenarios. First, a highly skewed access
distribution has a high concentration in a small number of
data chunks. In this case, the top N

2 % data chunks have sig-
nificantly higher priority than the next N

2 % data chunks.
Thus, selecting the second N

2 % data chunks may not bring
much improvement. On the contrary, in a relatively even
distribution, the top N% data chunks may not have quantita-
tively significant difference compared to data chunks after
them, i.e., more than N% data chunks should be selected.
ATMem employs a derivative-based search, similar to a k-
means clustering technique, to adjust the threshold value
by quantifying the changes relative to the highest priority
score (max PR). Additionally, ATMem includes a theoretical
minimum priority for a given data chunk size and adjusts
for the sampling rate denoted as Freqsamplinд .

296

ATMem CGO ’20, February 22–26, 2020, San Diego, CA, USA

N100	 N101	 N110	 N111	

4

1 3

1 0 1 2

0 1 0 0 1 0 1 1

N10	

Sampled	critical	
Sampled	non-critical	

N00	

N11	

N1110	 N1111	N1100	 N1101	N1010	N1000	 N1011	N1001	

DOi	

a Construct a m-ary tree from the data
chunks in DOi .

N100	 N101	 N110	 N111	

4

1 3

1 0 1 2

0 1 0 0 1 0 1 1

N10	

Sampled	critical	
Sampled	non-critical	

N00	

N11	

N1110	 N1111	N1100	 N1101	N1010	N1000	 N1011	N1001	

DOi	

TR=0.5	 TR=1	TR=0.5	 TR=0	

TR=0.75	TR=0.25	

b Calculate the tree ratio (TR) of each inter-
nal node bottom-up.

N100	 N101	 N110	 N111	

4

1 3

1 0 1 2

0 1 0 0 1 0 1 1

N10	

Sampled	critical	
Sampled	non-critical	

N00	

N11	

N1110	 N1111	N1100	 N1101	N1010	N1000	 N1011	N1001	

DOi	

TR=0.5	 TR=1	TR=0.5	 TR=0	

TR=0.75	TR=0.25	

TR	Threshold=0.5	
	

c Promote prospective data chunks from
top-down.

Figure 3. Three stages in a tree-based global promotion: construction, bottom-up calculation of tree ratio (TR), and top-down
promotion.

4.3 Tree-based Global Promotion
The second stage in ATMem analyzer considers the global
view of all data objects and adapts the selection to reflect
the relative importance of these data objects. ATMem con-
structs an m-ary tree for each data object to perform esti-
mated selection. This procedure promotes data chunks that
are not in sampled selection into prospective critical. ATMem
adjusts the selection with two parameters, i.e., m and the
threshold value of tree ratio (TR). This tree-based promotion
helps “patch up” information that is likely missed due to
sampling-based profiling. Similar approaches have shown
effectiveness for prefetching data from CPU memory into
GPU memory [11]. Additionally, the promotion can merge
multiple discrete segments into a continuous one, which
improves the efficiency of migrating data between memo-
ries. Figure 2 (the middle panel) illustrates an example of a
ternary tree derived for data object d1. The leaf nodes in red
represent critical data chunks from the sampled selection. In
the remainder of this section, we introduce three main steps
in the tree-based global promotion.

4.3.1 Tree Construction
ATMem analyzer uses the classification results in the first
stage to construct anm-ary tree for each data object. A data
chunk has value of either 1 (critical) or 0 (non-critical) from
Equation 3. These data chunks correspond to the leaf nodes of
the tree. Each leaf node has the value from its corresponding
data chunk. Figure 3a illustrates an example tree constructed
from the eight data chunks in DOi . Each critical data chunk
(in red) becomes a leaf node of value 1. From bottom-up,
ATMem creates internal nodes of the tree. Each internal
node carries value as the sum of its children nodes.
Tree ratio (TR) of an internal node is defined as the ratio

between its value and the number of its descendant leaf
nodes. In Figure 3b, node N11 has four leaf nodes and its
TR is calculated as 3/4. Tree ratio is a metric that quantifies
the likelihood of critical data chunks in a ranдe of memory
space. Here, the range of memory space depends on the level
of a node. For instance, the root node N0 covers the entire
address space of DOi , while the node N100 only covers the

first quarter address space. ATMem adjustsm to control the
range of memory space represented by an internal node as
well as the sensitivity to a threshold value of tree ratio. For
instance, a quad-tree can have more threshold values of tree
ratio than a binary tree.

4.3.2 Global Adaptive TR Threshold
ATMem uses the tree ratio as an indicator for whether the
sampled non-critical data chunks (yellow arrows in Figure 3)
could still be important but not captured in the sampling.
Also, a small gap in a large continuous address space can be
“patched up” to improve data migration because launching
multiple migrations would have higher overhead than a sin-
gle migration. A naive design would use a fixed threshold
value for tree ratio (θ (TRi)) such that if an internal node has
TR value higher than the threshold value, all its non-critical
children will be promoted to critical.

W (DOi) =

∑N
j=1 PRlocal (DCi j) ·CAT (DCi j)∑N

j=1CAT (DCi j)
(4)

θ (TRi)
′ = ϵ +

θ (TRi) · (maxW −W (DOi))

∥minW −maxW ∥
(5)

ATMem adjusts the threshold value for each data object
based on its global relative ranking. The adapted thresh-
old value (θ (TRi)′ in Equation 5) mitigates influence from
different sampling frequencies, applications, data sets, and
platforms. ATMem calculates the averaged priority of a data
object in Equation 4 denoted as its weight (W). Weight quan-
tifies the significance of selected data chunks, where a data
structure of fewer critical data chunks with high priority has
a higher weight than a data structure of more critical data
chunks with low priority. From Equation 5, a large weight
value would decrease the tree ratio threshold, causing the
top-down promotion procedure (to be introduced next) to
promote more non-critical data chunks. ATMem calculates
the weight space as the gap between the minimum and max-
imum weight of all data structures. It also includes ϵ as a
theoretical minimum threshold value that depends on the
value ofm. For instance, an octree would have ϵ = 0.125 as
a meaningful lower bound.

297

CGO ’20, February 22–26, 2020, San Diego, CA, USA Yu Chen, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren

m
ul
ti-
th
re
ad
ed

	c
op

y	

0x10000000	

	
	
	
	
	

	
	
	
	
	
	

	
	
	

...	

Virtual	Address	Space	 Physical	Address	Space	

0x00000000	

0x00ffffff	
staging	buffer	

2	

1	

a Staging

0x10000000	

	
	
	
	
	

	
	
	
	
	
	

	
	
	

	
...	

Virtual	Address	Space	 Physical	Address	Space	

0x00000000	

0x00ffffff	

3	 deallocate	&	
remap	

b Remapping

0x10000000	

	
	
	
	
	

	
	
	
	
	
	

	
	
	

	
...	

Virtual	Address	Space	 Physical	Address	Space	

0x00000000	

0x00ffffff	

m
ul
ti-
th
re
ad
ed

	c
op

y	
2	

cMoving

Figure 4. Fast migration at application level using staging buffers and multi-threaded data copy.

4.3.3 Top-down Promotion
ATMemuses the threshold value of tree ratio from Equation 5
to promote prospective data chunks into estimated selection.
Each data object may be assigned a different threshold value
after the global adaptive ranking. ATMem starts traversing
from the root node and performs a breadth-first search to find
an internal node with tree ratio higher than the threshold
value. Starting from that node, ATMem tries to “patch up”
data chunks on its descendant leaf nodes. For example, in
Figure 3c, the data object has a threshold value of 0.5, and
the node N11 has a tree ratio of 0.75. Next, ATMem identifies
those N11’s children nodes whose tree ratio are lower than
the threshold value, i.e., the node N110. ATMem promotes
the right children node with zero tree ratio to be estimated
critical. This top-down promotion procedure results in a
single continuous region in the data object DOi to be placed
on high-performance memory.

4.4 Data Placement Optimization
ATMem uses the decision from the analyzer to optimize data
placement at the application level. In particular, ATMem
changes the physical memory of the selected data chunks
to high-performance memory without changing the virtual
memory address of the data object. This partial migration of
a data object minimizes the modifications to the application
source code.
Figure 4 illustrates three main steps of the multi-stage

multi-threaded data migration approach. In this exam-
ple, a data object has a virtual memory address from
0x10000000 to the low end of the yellow box. The system
has two types of physical memories, as indicated in blue and
red in the physical address space. Each segment in the ad-
dress space represents a physical page. ATMem analyzer has
determined that the data chunks in the yellow box, denoted
as a source region, should be placed on high-performance
memory.
In the first step, ATMem uses multiple threads to copy

the value in the source region to a staging buffer concur-
rently. The staging buffer is physically located on the target
physical memory, as indicated by the mapping (black arrows

Figure 4a) to red pages in physical space. After that, ATMem
remaps the virtual address of the source region to point to
(empty) physical pages on the target memory (Figure 4b).
Note that no data movement occurs in this stage and the
virtual address space of the data object remains intact. Fi-
nally, in Figure 4c, ATMem uses multiple threads to copy
the stored value from the staging buffer to the yellow region.
The whole procedure has data moved twice, i.e., one between
two memories and one within the same memory. ATMem
adjusts the concurrency for data copy to exploit memory
bandwidth supported by the hardware.

5 Implementation and Optimization
We implement ATMem as a runtime library for general het-
erogeneous memory systems. ATMem uses precise address
sampling for profiling and provides a set of API for register-
ing data structures and initiating data migration.

5.1 Hardware Supported Sampling
ATMem profiler uses hardware counters for low-overhead
profiling. In particular, ATMem relies on the precise address
sampling capability supported by hardware to collect the
memory addresses of data accesses and correlates them to
data chunks. Currently, ATMem is implemented on perfor-
mance monitoring units (PMU) with processor event-based
sampling (PEBS) on Intel processors [12]. ATMem can be
easily extended to other processors with similar features,
e.g., AMD processor [8].

ATMem automatically adjusts the sampling frequency of
PMUs at runtime. Before enabling PMUs, ATMem combines
the size and number of all data chunks and the number of
application threads to adjust an empirical sampling rate on
a given platform. This adaption avoids unnecessarily high
sampling frequency while also ensures efficient information
collection.

5.2 API
ATMem provides a minimal set of API (Listing 1) for easy
adoption in existing applications. The main purpose of the
interface is to inform ATMem runtime about the data objects

298

ATMem CGO ’20, February 22–26, 2020, San Diego, CA, USA

Listing 1. API for registering, profiling and optimization.
1 void *atmem_malloc (size_t);
2 void atmem_free (void *);
3 void atmem_profiling_start();
4 void atmem_profiling_stop();
5 void atmem_optimize();

Table 1. Experiment Platform Specifications.

NVM-DRAM Testbed
Model Intel R○ Xeon R○ Platinum 8260L
Processor 2nd Gen Intel R○ Xeon R○ Scalable processor
Core 2.4 GHz, 3.9 GHz Turbo frequency
Cache 32 KB d-cache and 32 KB i-cache, 1 MB private L2, 35.75 MB shared L3
Memory 96 GB DDR4 DRAM and 768 GB Optane DC NVDIMM per socket

MCDRAM-DRAM Testbed
Model Intel R○ Xeon R○ Phi 7200
Processor 2nd Gen Intel R○ Xeon PhiTM processor
Core 1.1 GHz, 1.7 GHz Turbo frequency
Cache 32 KB d-cache and 32 KB i-cache, 512 KB private L2
Memory 16 GB MCDRAM and 96 GB DDR4 DRAM

so that ATMem can link the collected memory address to
data objects. Upon registration using atmem_malloc(),
ATMem runtime internally determines the granularity of
the data chunks for that data structure. Code transformation
that converts memory allocation routines from malloc-like
functions to atmem_alloc() is also feasible. However,
programmers could use application knowledge to improve
this decision.
ATMem profiler monitors PMU on cores and aggregated

data for analysis for multi-threaded applications. One possi-
ble optimization is to monitor only a subset of PMUs, which
is beyond the scope of this work. Currently, ATMem requires
programmers to indicate when to start migrating data, i.e.,
atmem_optimize(). Future works on compiler optimiza-
tion could automatically insert this function based on static
analysis.

6 Experimental Setup
Our evaluation is performed on two real hardware testbeds.
The first testbed is the 2nd Gen Intel R○ Xeon R○ Scalable
processor platform that features the Intel Optane byte-
addressable NVM and DDR4 DRAM. Table 1 summarizes
the configurations. The Optane NVM is configured in App
Direct mode and exposed to CPUs as a NUMA node. DRAM
and NVM on the same socket share six memory channels
that operate 2400 GT/s, i.e., a theoretical peak bandwidth
of 115 GB/s. Our experiment uses 48 hardware threads and
memories on one socket to eliminate the reported NUMA
issues [25]. The second testbed is the Inter Knights Landing
Xeon Phi processor (KNL) [31] that features 256 hardware
threads, 16 GB high-bandwidth 3D MCDRAM and 96 GB
DDR4 DRAM. MCDRAM is configured in flat mode.

Table 2. Characteristics of graph inputs.

Graphs Number of Vertices Number of Edges
pokec 1.6 M 30.6 M
rmat24 16.8 M 268.4 M
twitter 41.7 M 1.5 B
rmat27 134.2 M 2.1 B

friendster 68.3 M 2.1 B

We use SIMD implementation of five irregular applica-
tions [28], i.e., breadth-first search (BFS), single-source short-
est path (SSSP), PageRank (PR), betweenness centrality
(BC), and connected components (CC) for evaluation. BFS,
SSSP, PR, BC, and CC use a mixture of five graphs, in-
cluding pokec, rMat24, twitter (twt), rMat27, and
Friendster (friend). Table 2 shows these graphs’ ver-
tices count and edges count, e.g., Friendster network
dataset [1] contains 68.3M vertices and 2.1B edges.
Applications were compiled by the Intel C++ Compiler

(icc 19.0.2.187) with -O3 option and AVX512 flag. For each
test, ATMem turns on hardware profiling in the first itera-
tion and migrates data before the second iteration starts. The
evaluation uses the benchmark run time from the second
iteration as the optimized execution time. On both platforms,
data to memory binding is controlled by ‘numactl’ in lib-
numa [17]. The experiments are repeated ten times and the
average time is reported.

7 Evaluation
In this section, we first present the overall performance
of ATMem in five graph applications using five data sets
on two testbeds. Next, we perform a sensitivity test to
evaluate the effectiveness of tree ratio in selecting data
chunks. Finally, we compare the multi-stage multi-threaded
migration strategy with the standard system service.

Table 3. ATMem performance on NVM-DRAM testbed com-
pared to an all-DRAM ideal case

Slowdown BFS SSSP PR BC CC
Min. 25% 26% 24% 9% 54%
Max. 2.4× 2.0× 3.0× 1.8× 2.0×

7.1 Overall Performance
This section evaluates the performance improvement from
ATMem adaptive data placement. In particular, we compare
the performance of applications on each testbed with the
two reference performance. On the NVM-DRAM system, the
baseline places data on the Intel Optane NVM (blue bars in
Figure 5) while the ideal reference places all data in the DDR4
DRAM (green bars in Figure 5). On the MCDRAM-DRAM
system, the baseline places all data in the DDR4 DRAM. We
cannot have an ideal reference where all data is placed in

299

CGO ’20, February 22–26, 2020, San Diego, CA, USA Yu Chen, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren

MCDRAM due to its limited capacity and the large data sets
in use. Thus, we use the MCDRAM preferred NUMA policy
provided by libnuma, i.e., ‘numactl -p MCDRAM’ (denoted
as MCDRAM-p) as the ideal reference.
On the NVM-DRAM testbed, ATMem can effectively

bridge the performance gap between NVM and DRAM with
a low requirement on DRAM capacity. Figure 5 presents the
execution time of applications on this NVM-DRAM testbed.
This result shows that data placement by ATMem signifi-
cantly reduces the execution time compared to the all-NVM
baseline, reaching 1.25×-8.4× improvements—this is calcu-
lated from the first bar (blue) and second bar (red) in Figure 5.
In Table 3, we compare ATMem with the ideal case where
all data is placed in DRAM. ATMem can either achieve com-
parable performance or reduce the performance gap in Fig-
ure 1a significantly. For instance, SSSP with Friendster
dataset using ATMem data placement is only 26% slower
than placing all data in DRAM. Note that ATMem solution
only places 12% data in DRAM (as shown in Figure 7). Fig-
ure 7 also reports the ratio of data that is placed by ATMem
on high-performance memory for other applications. This ra-
tio is calculated by the data placed on the high-performance
memory (DRAM in this case) over the total data size.
On the MCDRAM-DRAM testbed, a similar trend is pre-

served between the ATMem data placement and the baseline
all-DRAM case, i.e., ATMem data placement can significantly
outperform the baseline, achieving 1.1×-3× execution time
speedup with only placing a small portion of data (3.8%-
18.2%) on high-performance MCDRAM. An interesting re-
sult comes from the superior performance of ATMem com-
pared to the ideal reference. In Figure 6, ATMem placement
significantly reduces the execution time for large datasets
like Friendster and rMat27, compared to MCDRAM-
p option. For Friendster, ATMem reaches up to 2.79×
improvement in BFS with only 15% data in MCDRAM. Fig-
ure 8 reports the ratio of data that is placed by ATMem on
high-performance MCDRAM for all applications.

7.2 Impact of Data Ratio
ATMem uses the tree ratio threshold value to tradeoff the
data size on the high-performance (but small) memory with
performance improvement. An optimal tradeoff would reach
a data ratio beyond which performance improvement is not
proportional to the increased data size on high-performance
memory. We evaluate the effectiveness of the ATMem tree
ratio by manually sweeping ϵ values in Equation 5. Conse-
quently, ATMem would place different data ratios on high-
performance memory. Figure 9 and 10 report the perfor-
mance sensitivity to data ratio on two testbeds using the
BFS benchmark.

ATMem consistently reaches the optimal tradeoff between
performance and data ratio in all tested data sets. In Figure 9
and 10, there exist optimal regions in each dataset, where
most data points are gathered. On the left of this region,

increasing data size could still bring significant performance
improvement. Beyond this region, however, the performance
only shows minimal changes, even when the data ratio is
substantially increased. For instance, Twitter dataset on
NVM-DRAM testbed (Figure 9d) stabilizes at approximately
15% data ratio. Further migrating data to DRAM only gains
negligibly. Overall, the results indicate that ATMem can ef-
fectively detect the dense regions in graph applications to
achieve near ideal performance using small memory capac-
ity.
MCDRAM-DRAM testbed has limited capacity on the

high-bandwidth memory, unable to accommodate all data in
rMat27, Twitter, and Friendster in BFS. Thus, the
maximum data ratio in Figure 10 is less than one. We notice
that placing data size near the memory capacity, i.e., 16 GB,
could sometimes lower performance. Instead, the ATMem
identifies optimal regions much smaller than the capacity,
avoiding this peformance degradation. The experimental re-
sults also indicate that the efficient detection and placement
of dense regions in graph applications is essential for perfor-
mance optimization on heterogeneous memory systems.

7.3 Data Migration
We evaluate the effectiveness of the multi-stage multi-
threaded migration in ATMem by comparing it to the system
service mbind. In this experiment, each benchmark has two
versions of implementation using the two mechanisms, re-
spectively. Table 4 reports the number of TLB misses after
migration and the time spent in migration using mbind
implementation, as normalized to that using our ATMem
approach.
The results demonstrate that our ATMem approach dra-

matically reduces the number of TLB misses after data mi-
gration on both testbeds. The improvement in TLB misses on
the NVM-DRAM testbed is considerably higher than that on
MCDRAM-DRAM testbed. However, the data migration time
on MCDRAM-DRAM shows higher speedup than that on
the NVM-DRAM testbed. On NVM-DRAM testbed, ATMem
reduces the data migration by 1.3×-2.7× (average 2.07×), as
compared to mbind. On MCDRAM-DRAM testbed, ATMem
manages to achieve 3.0×-8.2× (average 5.32×) improvement.
The different bandwidth of source memories on the two
testbeds likely causes this difference. Migration fromNVM to
DRAM is bottlenecked at the read bandwidth of the Intel Op-
tane NVM, while data migration from DRAM to MCDRAM
can exploit the bandwidth of DRAM. The Intel Optane NVM
read bandwidth is reported to be 39 GB/s [25] while DRAM
on KNL platform can reach 90 GB/s bandwidth [31].

7.4 Overhead Analysis
The overhead of ATMem comes from two sources: profiling
and data movement. With the help of the hardware PMU,
ATMem incurs minor overhead during profiling, i.e., less

300

ATMem CGO ’20, February 22–26, 2020, San Diego, CA, USA

0	

1	

2	

3	

4	

5	

6	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Ti
m
e	
(s
)	

Optane	DC	PMM	
ATMem	
DD4	DRAM	

a BFS

0	

20	

40	

60	

80	

100	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Optane	DC	PMM	
ATMem		
DD4	DRAM	

b SSSP

0	

5	

10	

15	

20	

25	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Optane	DC	PMM	
ATMem		
DD4	DRAM	

c PR

0	

1	

2	

3	

4	

5	

6	

7	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Optane	DC	PMM	
ATMem		
DD4	DRAM	

d BC

0	

2	

4	

6	

8	

10	

12	

14	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Optane	DC	PMM	
ATMem		
DD4	DRAM	

e CC

Figure 5. Execution time on NVM-DRAM testbed: NVM-only, NVM-DRAM with ATMem, and DRAM-only.

0	

1	

2	

3	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Ti
m
e	
(s
)	

DRAM	
ATMem	
MCDRAM-p	

a BFS

0	

10	

20	

30	

40	

50	

60	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

DRAM	
ATMem	
MCDRAM-p	

b SSSP

-1	

1	

3	

5	

7	

9	

11	

13	

15	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

DRAM	
ATMem	
MCDRAM-p	

c PR

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

DRAM	
ATMem	
MCDRAM-p	

d BC

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

10	
11	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

DRAM	
ATMem	
MCDRAM-p	

e CC

Figure 6. Execution time on MCDRAM-DRAM testbed: DRAM-only, DRAM-MCDRAM with ATMem, and MCDRAM-p.

0	

5	

10	

15	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Da
ta
	R
at
io
	(%

)	

a BFS

0	

5	

10	

15	

20	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Da
ta
	R
at
io
	(%

)	

b SSSP

0	

5	

10	

15	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Da
ta
	R
at
io
	(%

)	

c PR

0	

5	

10	

15	

20	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Da
ta
	R
at
io
	(%

)	

d BC

0	

5	

10	

15	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Da
ta
	R
at
io
	(%

)	

e CC

Figure 7. Data ratio on NVM-DRAM testbed: Data ratio is calculated by DRAM data size over total size.

0	

5	

10	

15	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Da
ta
	R
at
io
	(%

)	

a BFS

0	

5	

10	

15	

20	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Da
ta
	R
at
io
	(%

)	

b SSSP

0	

5	

10	

15	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Da
ta
	R
at
io
	(%

)	

c PR

0	
1	
2	
3	
4	
5	
6	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Da
ta
	R
at
io
	(%

)	

d BC

0	

5	

10	

15	

20	

po
ke
c	

tw
t	

rm
at2
4	

rm
at2
7	

frie
nd
	

Da
ta
	R
at
io
	(%

)	

e CC

Figure 8. Data ratio on MCDRAM-DRAM testbed: Data ratio is calculated by MCDRAM data size over total size.

301

CGO ’20, February 22–26, 2020, San Diego, CA, USA Yu Chen, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren

0	

0.02	

0.04	

0.06	

0.08	

0	 0.5	 1	

Ti
m
e	
(s
)	

Data	Ratio	

a Pokec

0	

0.2	

0.4	

0.6	

0	 0.5	 1	

Ti
m
e	
(s
)	

Data	Ratio	

b rMat24

0	

1.5	

3	

4.5	

0	 0.5	 1	

Ti
m
e	
(s
)	

Data	Ratio	

c rMat27

0	

0.5	

1	

1.5	

2	

2.5	

0	 0.5	 1	

Ti
m
e	
(s
)	

Data	Ratio	

d Twitter

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

0	 0.5	 1	

Ti
m
e	
(s
)	

Data	Ratio	

e Friendster

Figure 9. Data ratio impact on performance on NVM-DRAM testbed for BFS: x-axis is the data ratio placed in DRAM.

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0	 0.5	 1	

Ti
m
e	
(s
)	

Data	Ratio	

a Pokec

0	

0.1	

0.2	

0.3	

0.4	

0	 0.5	 1	

Ti
m
e	
(s
)	

Data	Ratio	

b rMat24

1	

1.25	

1.5	

1.75	

2	

0	 0.1	 0.2	 0.3	
Ti
m
e	
(s
)	

Data	Ratio	

c rMat27

0	

0.3	

0.6	

0.9	

1.2	

0	 0.2	 0.4	 0.6	 0.8	

Ti
m
e	
(s
)	

Data	Ratio	

d Twitter

1	

1.5	

2	

2.5	

3	

3.5	

0	 0.05	 0.1	 0.15	

Ti
m
e	
(s
)	

Data	Ratio	

e Friendster

Figure 10.Data ratio impact on performance on MCDRAM-DRAM testbed for BFS: x-axis is the data ratio placed in MCDRAM.

Table 4. Reduction in TLB Misses and migration time by the
multi-stages multi-threaded approach compared to mbind
in PR.

Dataset NVM-DRAM MCDRAM-DRAM
TLB misses Time TLB misses Time

pokec 2.09× 1.32× 2.00× 8.26×
rmat24 73.62× 2.71× 2.53× 4.42×
rmat27 15.77× 2.66× 1.17× 5.71×
twitter 1.16× 1.94× 1.64× 3.08×

friendster 12.26× 1.72× 1.25× 5.16×
Avg. 20.98× 2.07× 1.72× 5.32×

than 10% of the first iteration. The data movement overhead
depends on the amount of data selected for migration.
The number of iterations required to amortize ATMem’s

overhead is decided by the kernel and the input data. In our
experiments, most benchmarks can get enough benefits to
compensate the overhead caused by ATMem within a few
iterations. For example, data movement operation incurs 37%
overhead for SSSP with Friendster dataset on HBM for the
first (single) iteration. Since ATMem brings over 50% speedup
for a single iteration in SSSP, the overhead is amortized after
only one more iteration.

8 Related Work
Heterogeneous memory systems have been extensively stud-
ied recently. Before real hardware became available, many
prior efforts used emulators and simulators [9, 18, 20, 22,
29, 32, 34]. Constraint by the gap between emulation and
real commodity hardware, some previous findings may need

to be revisited. For this consideration, ATMem is evaluated
on two real hardware. The following works are related to
ATMem.

Data placement. [33] employs a data-centric analysis
and a differential analysis to profile and associate each
data structure with varied latency and bandwidth config-
urations. [9] classifies the memory access pattern of each
memory region into three classes using an Intel Pin tool. It
aims to maximize the overall data placement benefit with a
greedy algorithm. [30] provides guidance for data placement
by collecting memory traces with Intel Pin-based offline
profiling tool. Above works employ offline profiling. More
recently, [34] proposes Tahoe, a run-time PMU based data
placement tool. Tahoe also uses LLC miss as the main metric
to identify the data placement benefit of each data structure.
It targets the whole data structure placement. These works
do not target graph applications and thus, not considering
adaptive granularity or dynamics as ATMem.

Data movement. [21] introduces a new OS-service for
asynchronous memory movement with hardware acceler-
ation. Similar efforts in [2, 3, 16, 35] also intend to opti-
mize memory movement at either operating system or ar-
chitecture level. As system-level services, their solutions
need to ensure performance reliability at the cost of extra
overhead.While they target future operating system or archi-
tecture, ATMem leverages application knowledge by using
an application-level mechanism to improve migration on the
existing systems.

Data placement on GPUs. Modern GPUs also feature
heterogeneous memories, i.e., high-bandwidth GDDR or
HBM on the device and DRAM on the host. [30] introduces

302

ATMem CGO ’20, February 22–26, 2020, San Diego, CA, USA

a Pin based offline profiling tool. [4] proposes a memory
specification language to guide data placement on GPUs. Ex-
tending our approach onGPUs requires special consideration
in CPU-GPU links and data coherence and GPU execution
model.

9 Discussion
This section discusses some current limitations and possible
generalization in the future work.

Limitations. First, ATMem currently focuses on the per-
formance aspect. Our future work will extend the heuristic in
data management to guarantee data consistency (particularly
for NVM) when on demand. Second, some HMS architecture
could support aggregated bandwidth from memories. For
instance, KNL has independent memory channels to MC-
DRAM and DRAM respectively. In contrast, the Intel Optane
NVM is sharing memory channels with DRAM. ATMem will
continue enhance placement decisions to utilize both mem-
ory bandwidth when supported by the architecture. Third,
ATMem migrates data during the iterations of graph exe-
cution. Using advanced compiler analysis to automatically
insert ATMem API between iterations could overlap the data
movement.

Generalization. Although ATMem is specifically pre-
sented as an HMS management framework for graph ap-
plications, it also works well for other irregular applications
or even regular ones because its profiling and data migration
mechanisms are generally applicable to any applications.
We also evaluated ATMem on sparse matrix computations,
such as SpMV, and it achieved similar results as the graph
applications. Data accesses in regular applications are more
uniformly distributed so that adjusting data chunks to equal
size of the whole data structure results in the same data
placement as exiting coarse-grained solutions.

10 Conclusion
Active development in new memory devices brings heteroge-
neous memory systems as a solution to address the scaling
challenge in DRAM. Efficient data placement in graph appli-
cations on heterogeneous memory systems needs to leverage
the advantage of each memory while avoiding their limi-
tations. This work proposes ATMem, an adaptive-grained
runtime framework that consists of a lightweight profiler
based on hardware sampling, a novel analyzer using m-ary
tree-based heuristics to classify and predict data regions, and
a high-bandwidth migration mechanism at the application
level.
ATMem is evaluated on two real heterogeneous mem-

ory systems including the latest Intel Optane NVM, with
five graph applications. The experimental results show that
ATMem can achieves an average of 1.7×-3.4× speedup on
NVM-DRAM and 1.2×-2.0× speedup on MCDRAM-DRAM

over the baseline by selecting merely 5%-18% data onto high-
performance memory. ATMem also helps to bridge the gap
between NVM and DRAM on the NVM-DRAM machine,
achieving a comparable performance to the case that places
all data in the high-performance DRAM. ATMem data migra-
tion also outperforms the system service with 2.07×-5.32×
speedup.

Acknowledgments
The authors would like to thank the anonymous reviewers
for their valuable and thorough comments. This work was
partially supported by a Google Faculty Research Award and
a Google gift. This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344
and supported by the Exascale Computing Project (17-SC-
20-SC), LLNL-CONF-795320.

References
[1] Friendster network dataset – KONECT, April 2017.
[2] Neha Agarwal and Thomas F Wenisch. Thermostat: Application-

transparent page management for two-tiered main memory. In ACM
SIGARCH Computer Architecture News, volume 45, pages 631–644.
ACM, 2017.

[3] Santiago Bock, Bruce R Childers, Rami Melhem, and Daniel Mossé.
Concurrent migration of multiple pages in software-managed hybrid
main memory. In 2016 IEEE 34th International Conference on Computer
Design (ICCD), pages 420–423. IEEE, 2016.

[4] Guoyang Chen, Bo Wu, Dong Li, and Xipeng Shen. Porple: An extensi-
ble optimizer for portable data placement on gpu. In Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 88–100. IEEE Computer Society, 2014.

[5] HMC Consortium. Hybrid Memory Cube Specification 2.1.
http://hybridmemorycube.org/files/SiteDownloads/HMC-30G-
VSR_HMCC_Specification_Rev2.1_20151105.pdf, 2015. [Online;
accessed 22-May-2018].

[6] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S
Nikolopoulos, Bronis R De Supinski, and Martin Schulz. Prediction
models for multi-dimensional power-performance optimization on
many cores. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques, pages 250–259. ACM,
2008.

[7] Thaleia Dimitra Doudali and Ada Gavrilovska. Mnemo: Boosting
memory cost efficiency in hybrid memory systems. In 2019 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 412–421. IEEE, 2019.

[8] Paul J Drongowski. Instruction-based sampling: A new performance
analysis technique for amd family 10h processors. Advanced Micro
Devices, 2007.

[9] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. Data tiering in heterogeneous memory systems. In Proceed-
ings of the Eleventh European Conference on Computer Systems, page 15.
ACM, 2016.

[10] Vincent W Freeh, Nandini Kappiah, David K Lowenthal, and Tyler K
Bletsch. Just-in-time dynamic voltage scaling: Exploiting inter-node
slack to save energy in mpi programs. Journal of Parallel and Dis-
tributed Computing, 68(9):1175–1185, 2008.

[11] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. Inter-
play between hardware prefetcher and page eviction policy in cpu-gpu

303

http://hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf
http://hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf

CGO ’20, February 22–26, 2020, San Diego, CA, USA Yu Chen, Ivy B. Peng, Zhen Peng, Xu Liu, and Bin Ren

unified virtual memory. In Proceedings of the 46th International Sym-
posium on Computer Architecture, ISCA ’19, pages 224–235, New York,
NY, USA, 2019. ACM.

[12] Intel. Intel® 64 and ia-32 architectures software developer’s man-
ual. https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf, May 2019.

[13] JEDEC JESD229-2. Wide I/O 2 (WideIO2), 2014. [Online; accessed
22-May-2018].

[14] JEDEC JESD235A. High bandwidth memory (HBM) DRAM. JEDEC
Solid State Technology Association, Nov 2015.

[15] JEDEC JESD250. Graphics double data rate 6 (GDDR6) SGRAM stan-
dard. JEDEC Solid State Technology Association, Jul 2017.

[16] Sudarsun Kannan, AdaGavrilovska, Vishal Gupta, and Karsten Schwan.
Heteroos—os design for heterogeneous memory management in dat-
acenter. In 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), pages 521–534. IEEE, 2017.

[17] Andi Kleen. A numa api for linux. Novel Inc, 2005.
[18] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Archi-

tecting phase change memory as a scalable dram alternative. ACM
SIGARCH Computer Architecture News, 37(3):2–13, 2009.

[19] Dong Li, Bronis R de Supinski, Martin Schulz, Kirk Cameron, and
Dimitrios S Nikolopoulos. Hybrid mpi/openmp power-aware comput-
ing. In 2010 IEEE International Symposium on Parallel & Distributed
Processing (IPDPS), pages 1–12. IEEE, 2010.

[20] Soklong Lim, Zaixin Lu, Bin Ren, and Xuechen Zhang. Enforcing
crash consistency of evolving network analytics in non-volatile main
memory systems. In 2019 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 124–137. IEEE,
2019.

[21] Felix Xiaozhu Lin and Xu Liu. Memif: Towards programming heteroge-
neous memory asynchronously. ACM SIGARCH Computer Architecture
News, 44(2):369–383, 2016.

[22] Lei Liu, Shengjie Yang, Lu Peng, and Xinyu Li. Hierarchical hybrid
memory management in os for tiered memory systems. IEEE Transac-
tions on Parallel and Distributed Systems, 2019.

[23] M Ben Olson, Tong Zhou, Michael R Jantz, Kshitij A Doshi, M Graham
Lopez, and Oscar Hernandez. Membrain: Automated application guid-
ance for hybrid memory systems. In 2018 IEEE International Conference
on Networking, Architecture and Storage (NAS), pages 1–10. IEEE, 2018.

[24] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The pagerank citation ranking: Bringing order to the web. Technical
report, Stanford InfoLab, 1999.

[25] Ivy B Peng, Maya B Gokhale, and Eric W Green. System evaluation of
the intel optane byte-addressable nvm. In Proceedings of the Interna-
tional Symposium on Memory Systems. ACM, 2019.

[26] Ivy B Peng and Jeffrey S Vetter. Siena: exploring the design space of
heterogeneous memory systems. In SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
427–440. IEEE, 2018.

[27] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Pietro Cicotti, Erwin
Laure, and Stefano Markidis. RTHMS: A Tool for Data Placement on
Hybrid Memory System. In Proceedings of the 2017 ACM SIGPLAN
International Symposium on Memory Management, pages 82–91. ACM,
2017.

[28] Zhen Peng, Alexander Powell, BoWu, Tekin Bicer, and Bin Ren. Graph-
Phi: Efficient Parallel Graph Processing on Emerging Throughput-
oriented Architectures. In 2018 International Conference on Parallel
Architecture and Compilation (PACT). ACM, 2018.

[29] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers.
Scalable high performance main memory system using phase-change
memory technology. ACM SIGARCH Computer Architecture News,
37(3), 2009.

[30] Du Shen, Xu Liu, and Felix Xiaozhu Lin. Characterizing emerging
heterogeneous memory. In Proceedings of the 2016 ACM SIGPLAN
International Symposium on Memory Management, pages 13–23. ACM,
2016.

[31] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna
Vinod, Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and
Yen-Chen Liu. Knights landing: Second-generation intel xeon phi
product. Ieee micro, 36(2):34–46, 2016.

[32] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur
Mutlu, Fang Lv, Xiaobing Feng, and Guoqing Harry Xu. Panthera:
holistic memory management for big data processing over hybrid
memories. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 347–362.
ACM, 2019.

[33] Shasha Wen, Lucy Cherkasova, Felix Xiaozhu Lin, and Xu Liu. Profdp:
A lightweight profiler to guide data placement in heterogeneous mem-
ory systems. In Proceedings of the 2018 International Conference on
Supercomputing, pages 263–273. ACM, 2018.

[34] Kai Wu, Jie Ren, and Dong Li. Runtime data management on non-
volatile memory-based heterogeneous memory for task-parallel pro-
grams. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis, page 31. IEEE
Press, 2018.

[35] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Nimble page management for tiered memory systems. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, pages
331–345, New York, NY, USA, 2019. ACM.

304

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Heterogeneous Memory Systems
	2.2 Graph Applications
	2.3 Migration Mechanism

	3 Overview of ATMem
	4 Design of ATMem
	4.1 Adaptive Data Chunks
	4.2 Hybrid Local Selection
	4.3 Tree-based Global Promotion
	4.4 Data Placement Optimization

	5 Implementation and Optimization
	5.1 Hardware Supported Sampling
	5.2 API

	6 Experimental Setup
	7 Evaluation
	7.1 Overall Performance
	7.2 Impact of Data Ratio
	7.3 Data Migration
	7.4 Overhead Analysis

	8 Related Work
	9 Discussion
	10 Conclusion
	Acknowledgments
	References

