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Recognizing food types through sensor signals for unseen users remains remarkably challenging despite extensive recent
studies. The efficacy of prior machine learning techniques is dwarfed by giant variations of data collected from multiple
participants, partly because users have varied chewing habits and wear sensor devices in various manners. This work treats
the problem as an instance of the domain adaptation problem, where each user represents a domain. We develop the first
multi-source domain adaptation (MSDA) method for food-typing recognition, which consists of three major components:
stratified normalization, a multi-source domain adaptor, and adaptive ensemble learning. New techniques are developed for
each component. Using a real-world dataset comprised of 15 participants, we demonstrate that our method achieves 1.33× to
2.13× improvement in accuracy compared with nine state-of-the-art MSDA baselines. Additionally, we perform an in-depth
ablation study to examine the behavior of each component and confirm its efficacy.
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1 Introduction
The escalating global prevalence of obesity poses a significant public health risk, contributing to an alarming
number of premature deaths each year in both developed and rapidly developing countries. In the United States
alone, approximately 670,000 deaths annually are attributed to nutrition- and obesity-related diseases, including
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Table 1. Prior Works’ Low Generalization Performance

# Users # Food types Model type Acc. of predicting
Seen users Unseen users

Mirtchouk et al. [36] 6 40 Random forest 82.7% 29%
Wang et al. [55] 15 11 Two-layer Perceptron 82.3% 23%

We referenced the original paper and re-implemented their works to present seen and unseen users’ accuracy scores.
The original implementations have data from the same user in training and testing sets and achieved high accuracy.
The accuracy scores are degraded to a great extent when the setting is changed to predict the unseen user, i.e., split
data from one user as the testing set exclusively.

heart disease, cancer, and diabetes. Moreover, maintaining a well-structured dietary pattern is crucial for the health
status of every individual. To address this health crisis, there has been a push for the development of innovative
sensor-based technologies and machine learning models aimed at monitoring food intake and analyzing collected
data. Among the various solutions, machine learning models using motion and acoustic sensors, often integrated
into wearable devices like smartwatches, earphones, and glasses, have shown promise [47]. Notable advancements
include the application of random forests [36] and neural networks [55] to model food typing.

However, a critical challenge emerges when models are trained on a collective dataset from various users—
these models struggle to generalize effectively across different sets of users. Table 1 illustrates the diminished
performance when predicting food types for unseen users, highlighting the limitation of existing machine
learning models. This generalization issue becomes a significant barrier to large-scale deployment, as users expect
technologies to work seamlessly across diverse individuals. The variations in sensor locations and chewing habits
among different users hinder machine learning models from extracting robust user-oblivious signals, a problem
commonly referred to as the domain adaptation (DA) problem [5].

In this work, we specifically focus on the multi-source domain adaptation (MSDA) problem [34, 51, 61],
where labeled training data belongs to multiple domains, exacerbating the challenges associated with domain
divergence. Existing DA methods fall short when applied to the task of predicting food types for unseen users. To
address this, we propose a comprehensive pipeline that integrates a diverse set of techniques to combat multiple
interrelated subproblems (see Figure 4). Our contributions can be categorized into three main techniques:

Domain-Invariant Features: These features refer to data representations that remain consistent across different
domains. While end-to-end neural networks aim to automatically extract features unaffected by distribution
variations, such approaches prove ineffective in our setting. CoDATs [57], for example, work on long-range muscle
motions (e.g., sitting down, walking), making it unclear how an end-to-end neural network can efficiently extract
food-type signals from fine-grained muscle movements (e.g., chewing different types of foods) across diverse
domains. To mitigate domain shifts, we propose to apply an “anti-wisdom” approach, leveraging hand-crafted
features to trade domain expertise and manual labor for a simplification in fitting the target function. Additionally,
we introduce stratified normalization, inspired by stratified sampling in statistics, to control feature variations
across domains.These techniques, relying on different principles, work synergistically to enhance signal extraction.

Source-Source DA: This technique aims to align models trained on different source domains to control dissimi-
larity, facilitating effective generalization across diverse sources. While existing works [45, 56, 57, 60] primarily
concentrate on adapting multiple source domains to the target domain, they often overlook the inherent di-
vergence among the source domains themselves. It is essential to recognize that the multiple source domains
not only differ from the unseen target domain but also exhibit variations among each other to varying extents.
Therefore, the complexity of domain divergence is growing with the number of source domains. Consequently,
mitigating source-source domain divergence becomes crucial when training a reliable classifier for the target
domain; otherwise, the model will struggle to learn from multiple domains with different distributions. In our
work, we renovate a multi-branch neural network where each branch independently adapts one source domain to

ACM Transactions on Computing for Healthcare, Vol. 6, No. 1, Article 1. Publication date: January 2025.



Towards Recognizing Food Types for Unseen Subjects • 1:3

the target. This adaptation process incorporates a consensus regularizer [33] to guide all branches, encouraging
them to learn common features and effectively reduce source-source domain divergence.
Adaptive Ensemble Weight : This technique addresses the challenge of static ensemble weights, which can

be suboptimal, leading to accuracy degradation when incorporating data or models from irrelevant domains.
Inspired by theoretical work [34], we introduce a two-stage adaptive ensemble method that dynamically adjusts
ensemble weights for different users. Notably, our solution employs source-source similarities to filter out useless
or harmful models prone to mispredicting food types for unseen users.

While DA challenges are prevalent in many machine learning applications, existing techniques are often
tailored to specific domains and lack generalizability. This limitation becomes more pronounced in our context,
where adapting to multiple domains becomes increasingly challenging with a growing number of users. Previous
approaches are frequently tested on a limited number of domains (e.g., up to four domains [7, 16, 18, 26, 30, 40, 44,
54]) or synthetic data [39], rendering them less suitable for our multi-domain scenario. In contrast, our solution
stands out as a “cocktail” flavor, offering a pipeline in which each stage is either robust or effective to adapt
various numbers of domains. The first stage employs hand-crafted features and stratified normalization for each
domain independently, ensuring effectiveness regardless of the number of domains. The second stage employs a
multi-branch structured neural network with consensus regularization (CR) to control domain similarities. In
the final stage, our adaptive ensemble scheme further enhances robustness across different domain scales.

In summary, our contributions are as follows:

—An MSDA pipeline with renovated algorithm components is proposed to address the generalization issue in
the food type recognition task.

—A new set of techniques and principles is introduced, incorporating consensus regularizer, stratified normal-
ization, and domain knowledge-guided feature extraction to address the more severe domain divergence
problem caused by the growing number of domains.

—A two-stage adaptive ensemble method is designed to automatically assign weights to relevant domains and
prune off irrelevant ones. This method is robust to parameter settings and further improves accuracy.

—Extensive empirical evaluation is conducted. We experimentally verified the importance of hand-crafted
features in the food typing task with multiple domains. Besides, the evaluation shows that our method
achieved 1.33× to 2.13× higher accuracy than other baselines.

The rest of the paper is organized as follows: Section 2 explains the research effort closely related to this work.
Section 3 presents the challenges of performing DA on food typing. Section 4 demonstrates the overall solutions.
Section 5 describes experiments to evaluate our methods. Finally, a conclusion remark is given in Section 6.

2 Related Work
DA. The main challenge of DA was to reduce the domain discrepancy between different domains, which was
approached from multiple perspectives: (1) Data manipulation and feature engineering. Several existing works
selected a subset of training samples or assigned weights to them based on the distance of one training sample
to the test set [21, 31, 41]. Similarly, Nikolaidis et al. [37] iteratively selected subset training samples with high
confidence scores and fine-tuned the classifier with the selected data and predicted labels. An et al. [4] used
labeled target samples to fine-tune specific layers of a neural net (NN) that produced user-specific features. In
contrast, our approach prunes and assigns weights to the trained sub-models where the information of the dataset
had been learned so that labeled data were not wasted. TCA [38] and CORAL [49] learned matrix mappings to
align the features of different domains. Instance Normalization [15, 28] and AdaBN [29] designed domain-adapted
normalization layers to transform intermediate feature maps in an NN.These methods were not straightforward to
integrate into our framework but were more suitable for other tasks or training methodologies. (2) Neural network
innovation. Maximummean discrepancy (MMD) [48] measured the discrepancy between two domains and
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was applied to train various NNs to reduce distribution shift [17, 32, 53, 64, 65]. Inspired by MMD-based solutions,
various NNs coupled with domain discrepancy measurement functions were proposed, including Deep-CORAL
[50] and GAN-based solutions [13, 52, 59]. These approaches could be seamlessly extended to MSDA [51, 61]
by combining multiple source domains into one; however, they were susceptible to accuracy degradation [14,
29, 57] because the learning procedure was interfered with by quadratically increased domain divergences [42].
Our method instead learned data from different domains through multi-branch model training [9, 43]. Finally,
Luo et al. [33] proved that the disagreement between multiple sources was the upper bound for classification
errors, so optimizing the consensus regularizer led to better prediction performance [27, 39, 64]. (3) Ensemble
learning. It was proven that the target distribution could be represented as a weighted combination of source
distributions [34]. Accordingly, many existing efforts trained one model or multiple sub-models and late-fused
the prediction confidence scores with uniform weights [46, 64] or fine-tuned weights based on various metrics.
Peng et al. [39] assigned source-only accuracy weights to sub-models. Xu et al. [58] calculated a perplexity score
during the adversary training procedure as a weight. Guo et al. [19] designed a point-to-set metric based on
Mahalanobis distance to re-weight domain experts. Zhao et al. [62] re-weighted trained distilled source classifiers
using Wasserstein distance. Our method updates the mask weights (l<) and the similarity weights (lB ) based on
the entropy of ℓ1 distances between domain-specific models and MMD metrics. Another category of ensemble
schemes was to update weights during training. In contrast, our method updates weights after training without
interfering with the learning procedure.

DA and Food Type Recognition. Recognizing food types through sensor signals achieved promising results
in recent years. Oliver Amft’s team achieved 80 ∼ 100% accuracy in classifying four food types using earbud-
embedded microphone sensors [2]. Later, they produced two prototypes that achieved 80% and 86.6% accuracy,
respectively, in classifying 19 food types [1, 3]. Yin et al. [6] proposed a prototype for recognizing seven types
of food using two microphones embedded in a neckband. The microphone could also be placed near the mouth
to classify six types of food [20]. Besides microphones, a smart utensil containing an array of LEDs could
recognize twenty food types [22]. An intraoral sensor placed in the mouth while eating classified nine food types
based on temperature and jawbone movement [8]. However, the current state-of-the-art is the work combining
microphones with other sensor types. Samantha’s team identified 40 different types of food with an accuracy of
82.7% [36], combining a microphone-embedded earbud, Google Glass, and two smartwatches. Although these
food type recognition methods achieved acceptable accuracy, none considered the DA problem. Therefore, their
recognition accuracy could significantly decrease when the application environment or scenario changed (see
Table 1). Although prior works have applied DA to sensor signals in other tasks, they are not suitable for the
food-type recognition task for various reasons. For example, Zheng et al. [63] generated fake labels for the target
domain based on MMD [48] to recognize daily behaviors utilizing sensors scattered in an apartment. Mathur
et al. [35] studied the DA problem caused by different sensor deployment locations. Jiang et al. [23] adopt an
adversary training approach to recognize human activities for single subject on WiFi signals. These methods are
not effective in recognizing food types without incorporating domain knowledge.

3 Problem Setup, Motivation, and Challenges
This section describes the problem definition, reviews standard techniques, and performs preliminary experiments
to motivate our solutions.
Problem Setup. Figure 1 illustrates the chewing habits of different users for two types of foods: gum candy

and nuts. Users generally chew nuts faster and with less force than gum candy due to the properties of the
foods—gum is chewy, while nuts are crispy. However, the distributions among different users vary significantly,
leading to potential misclassification of food types. For instance, user 6 and user 8 exhibit completely different
chewing forces, with the minimum chewing force of user 6 being greater than the maximum chewing force of
user 8. This indicates distinct marginal distributions. Consequently, using a model trained on data from user 8 to
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Fig. 1. Per-user feature distribution. The left figure illustrates the feature distribution of chewing frequency, while the right
figure depicts chewing force. Two classes are visualized with different markers and colors. Generally, users chew gum more
slowly and with more force than nuts.

predict data from user 6 could result in all instances being misclassified as gum candy, which requires a stronger
chewing force. Similarly, user 2 and user 12 chew gum candy and nuts at a similar frequency, leading to similar
conditional distributions of chewing speed. However, this differs from other users, who chew nuts at a higher
frequency. These distribution divergences contribute to poor generalizability to unseen users, as shown in Table 1.
Additionally, determining which labeled users are similar to a new, unlabeled user is challenging. To address
the domain divergence issues in recognizing food types for unseen users, we first formalize this challenge as an
MSDA problem. We then analyze the performance of prior solutions to motivate our designs.

In anMSDA scenario, there exist= source domains and a target domain) , corresponding to different individuals.
We observe features and labels (x’s and ~’s) from source domains and only features (x’s) from the target. Our goal
is to build a classifier for predicting labels in the target domain using the available labeled data from = users and
unlabeled data from the target user. Let B8 be the number of observations from domain 8 and (8 = {(x9

8
, ~

9

8
)} 9∈[B8 ]

be the set of observations, each of which is independent and identically distributed (i.i.d.) sampled from the
distribution D8 . Similarly, we assume that the data (~) , x) )’s are sampled from distribution D) (note that ~) ’ are
the ground truth and not observed). Let also -8 = {x9

8
} 9∈[B8 ] (8 ∈ [=]) be the set of features, and -) = {x9

)
} 9∈[C ] be

the features of the target, where C is the total number of (unlabeled) observations from the target domain. Finally,
let D8 (- ) and D) (- ) be the feature distribution in domains 8 and ) , respectively.

When ~8 = ~) , meaning each domain has the same set of labels, the problem is defined as the closed set MSDA.
If this condition does not hold, but for at least one ~8 , ~8 ∩~) ⊂ ~) , the problem is defined as open set MSDA [61].
We describe and evaluate our method primarily using the closed set MSDA setting, similar to prior approaches
[27, 39, 45, 56, 57, 60]. To test whether our method can adapt to the more challenging scenario where the target
domain can only learn partial labels from each source domain, we also evaluate our method under the open set
MSDA configuration in Section 5.4.

Prior Solutions and Performance. DA appears widely in many areas. Different downstream applications possess
different distribution structures, so generic DA building blocks may not always be effective. To motivate our
work, we review standard techniques and perform preliminary experiments to highlight their inefficacy. As
aforementioned in Section 2, existing works develop or use techniques from one or more of the following
categories: A1. Data manipulation and feature engineering. A2. Neural network innovation. A3. Ensemble learning.
For example, CORAL [49] and TCA [38] use A1, DANN [14] uses A2, Schweikert et al. [46] use A1 and A3,
CoDATS [57] uses A2 and A3. Note that A1 and A2 usually do not appear together because there is a strong belief
that properly designed neural network models can automatically learn representations from raw data and do not
need heavy feature engineering. Therefore, no work simultaneously uses A1-A3.

Figure 2 showcases the results of our preliminary experiments on these techniques. The Upper bound refers to a
setting, in which labels in the target domain are accessible. Colored bars depict the performance of existing MSDA
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Fig. 2. Prior solutions’ accuracy. Comparing existing DA
algorithms to the upper bound (where labels from the tar-
get domain are available). We consider two variants of each
existing solution: Type I variants use data from all domains
to train one single model, whereas Type II variants train a
model from each domain and run ensemble learning algo-
rithms over multiple model predictions.

Fig. 3. Ablation study of Multi-source domain adaptor. A
simple experiment for the breakdown of “more data is bet-
ter,” we use the standard ensemble learning method to build
a forecast based on a linear combination of source mod-
els’ forecasts. G-axis is the number of used source domains,
and ~-axis is the achieved accuracy. Each point represents
the performance of the best-aggregated models subject to
the source number constraint. One can see that the per-
formance of the consolidated model first improves, then
degrades as the number of sources increases.

algorithms. Rigorous tuning efforts were applied to these algorithms, exploring two variants: Type I, utilizing data
from all sources to train a single model, and Type II, training a model for each source and generating forecasts for
the target through a linear combination of source models. The upper bound achieves over 80% accuracy, while
all MSDA techniques fall below 35%. This performance gap underscores the need for substantial advancements
in techniques, and intriguingly, Type II variants, employing ensemble learning, tend to outperform their Type I
counterparts—an observation we will revisit and leverage in our algorithm design.
Reasoning About the Performance. A salient challenge we face here is that the interactions between sources

and target and between domains grow quadratically in the number of users and the source-source and source-
target divergences are uniformly high. Specifically, a model tuned for a specific target requires us to control the
divergences between each source and the target, and between sources, the latter of which is quadratic in the
number of users. When divergences between sources are weak, source-source interaction can be suppressed in a
model. All existing techniques in Figure 2 focus on the source-target interaction and ignore the source-source
interaction so they have reasonable performance only when the divergences between each pair of source domains
are moderate and quickly deteriorate when divergences are significant.

Compounding a large source number and large divergences further amplify the weakness of existing tech-
niques/solutions: (i) Use A1 (or A1 & A3) without A2. TCA [38] and CORAL [49] focus on designing specialized
procedures to transform features x’s from different domains and pipe the transformed x with a standard NN,
which is usually sub-optimal because neural network architecture/loss functions are not optimized toward the
structure of the MSDA problem. (ii) Use A2 (or A2 & A3) without A1. While deep architectures (e.g., CoDATS [57])
are more flexible in learning feature representations, they cannot be fully automated to perform representation
learning from the raw data effectively. We observe that deep architectures’ inability to use raw features directly
is a generic problem for wearable ML problems and is not tied to a specific downstream prediction task (in
our case food type prediction). Section 4.6 elaborates further our observations. (iii) Problems of A3. Ensemble
learning assumes that each weak learner delivers sufficiently “orthogonal” and useful predictions. This assumption
also breaks. Specifically, we notice that sometimes having more ensembles in fact can harm (see Figure 3). This
result shows that increasing the number of ensembles first improves the prediction capability and then degrades
it [14, 29, 57]. This highlights a delicate interaction among ensembles and the challenges in weighting (and
pruning) them.

ACM Transactions on Computing for Healthcare, Vol. 6, No. 1, Article 1. Publication date: January 2025.



Towards Recognizing Food Types for Unseen Subjects • 1:7

Fig. 4. Overview of our solution.

4 Our Approach
This section explains our solution. Our key observation is that we need to innovate a broad set of techniques
across all A1-A3 (feature engineering/normalization, model architecture, and ensemble weighting) and integrate
them to collectively tackle the source-source and source-target divergence problems. Changes in one component
(e.g., feature engineering) can result in complex interactions with other components, so it is important to design
a “pipelined” system consisting of loosely interacting components. Each component in the pipeline addresses a
specific ML subproblem and can be implemented using one or more techniques. This pipeline articulates and
restricts the search space, defining the possible ways to integrate different techniques. By doing so, we can
allocate most of our computational resources to explore combinations of more promising techniques and limit the
resources spent on tuning less effective ones. We first provide an overview, and then describe each component
in detail.

4.1 Overview
Figure 4 provides a visual representation of our pipeline. Initially, raw time-series instances undergo processing
in the feature extractor, generating 65-dimensional hand-crafted features. This process yields target features
x̃9
)
= ℎ(x9

)
) and source features x̃9

8
= ℎ(x9

8
), with 8 ∈ [=]. Our DA algorithm is structured around three key

components (C1–C3): C1. Stratified Normalization: This component, vital for MSDA, normalizes features from
diverse domains to a consistent scale. This step is particularly crucial for datasets exhibiting significant shifts in
marginal distributions across domains. C2. Multi-Source Domain Adaptor : Comprising a shared layer 6(·) and a
set of = classifiers {31 (·), . . . , 3= (·)}, this component manages the delicate balance between model robustness and
diversity. The shared layer, 6(·), extracts robust features across domains, minimizing divergence. Each classifier,
38 (·), is individually optimized to learn labels from its respective source domain. Specifically, each branch 38 (·)
outputs ?8 for the source domain, feeding it into cross-entropy loss L2;B to train the classifier. Simultaneously, @8 is
produced from the target domain, and the pairs (@8 , ?8 ) are utilized in the MMD loss L<<3 to reduce source-target
divergence. Independence among the branches ensures diverse predictions, crucial for effective downstream
ensembling. Furthermore, ?8 outputs contribute to the CR L2>= to mitigate source-source divergence. C3. Adaptive
Ensemble Learner : Treating each output from 38 as an ensemble, this component determines suitable ensemble
weights by leveraging L<<3 and L2>= . These weights are dynamically adjusted, assigning greater significance to
sources more akin to the target.

4.2 Hand-Crafted Feature Extraction
We follow the approach [55] to construct a total collection of 65 features optimized for building food-type
recognition models. See Table 2. We let ℎ(·) be the feature engineering procedure so that ℎ(x) ∈ R65. Recall that
x̃ = ℎ(x), and we also let -̃8 = {ℎ(x9

8
) 9 } (8 ∈ [=] ∪ {) }, and 9 ∈ [B8 ] ∪ {) }). Our pipeline critically relies on
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Table 2. We Examine the Ability of DL Models to Learn All 65 Features

Target features 1–7 8 9 10–23 24–37 38–51 52–65 1–65
Sensors LG, RG LA, RA LG, RG LA RA LG RG All

LSTM Avg. '2 0.197 0.003 0.002 0.261 0.374 0.418 0.349 0.372
CoDATs Avg. '2 0.263 −0.038 −0.004 0.6231 0.6138 0.5549 0.5324 0.482

Left/right gyroscope and accelerometer sensors are abbreviated to LG, RG, LA, and RA. Features 1–7 are statistics
of chewing speed and duration; 8–9 are the magnitude of translation and rotation; 10–23 are the number of
mean-crossing, entropy/energy of frequency spectrum, maximum frequency component, and statistics of spectrum
component, 24–27, 38–51, and 52–65 extract the same features as 10–23 but on different sensors.

Fig. 5. Visualization (t-SNE) of normalized data. Points in • and 4 are observations from two different users. Different colors
represent different classes. Centroids of blue points from different users are highlighted (by bolder marks). (a) uses vanilla
normalization, whereas (b) uses stratified normalization (S-Norm). Both Pr[-̃8 ] (points in the same shape) and Pr[-̃8 | .8 ]
(i.e., the cloud of points in the same color from the same user) get much closer for two users using S-Norm.

hand-crafted features, which are more robust for food-typing tasks and departs from a recent “fashionable” trend
that aims to use a neural network to learn features automatically [57]. See also Section 4.6.

4.3 Stratified Normalization
Machine learning algorithms often assume that the data in training and test sets are from the same distribution,
which is severely violated in our setting. First, each user could wear devices in slightly different ways. Second,
people have different chewing habits. For example, when user 8 eats faster than user 9 , 8’s chewing time will be
shorter, but his or her chewing force will be stronger. Therefore, D8 and D9 could be drastically different.

Traditional normalization re-scales the input features across sources to have uniform standard deviations and
means, which is ineffective in our setting. Figure 5(a) shows data collected from two domains, 8 and 9 (users). After
normalizing the training data, the data still shift between D8 and D9 . The problem will become more pronounced
when the number of sources grows.

To address this challenge, we introduce a simple yet effective DA technique named stratified normalization
(S-Norm). S-Norm draws inspiration from stratified sampling, a method developed for sampling from multiple
subpopulations. It performs normalization independently for each -̃ = {-̃1, ..., -̃=, -̃) }. S-Norm serves two
primary purposes: (i) aligning features from different domains to the same scale, ensuring Pr(-̃ ) is well-aligned
(see Figure 5(b)). (ii) enhancing the alignment and ease of learning of conditional distributions Pr[G̃8 |~8 ] for
8 ∈ [=] ∪ {) } across different domains. For instance, users often chew nuts faster than ice-creams, making it
simpler to extract this signal under stratified normalization.
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4.4 MSDA
The MSDA takes re-scaled features as input and outputs a total number of = predictions (ensembles). It possesses
a branching structure, consisting of a “root” component 6(·) and a total number of = branches 38 (·) (8 ∈ [=]). Each
38 (·)’s and 6(·) has the linear-ReLu-linear structure. All the training data from different domains first flow into
6(·) simultaneously, and afterward, they are branched out to different 38 (·)’s. A 38 (·) consumes labeled data from
source domain 8 and unlabeled data from the target domain. Intuitively, 6(·) aims to extract features that are robust
across all domains, whereas 38 (·) aims to train an augmented model for Pr[~8 | x̃8 ] that approximates Pr[~) | x̃) ],
i.e., learning the link function for the target based on link function for the source 8 as well as unlabeled target
data.

Next, we explain how we implement this idea. We view the domain adaptor as sending -̃8 and -̃) to an
embedded space. We apply two techniques to learn 6(·) and 38 (·)’s.

—Technique 1. Properly construct embedded space. Intuitively, we aim to make sure after we apply 68 (·) to
B (x̃8 )’s and 6(x̃) )’s, these two “clouds” have similar distribution in the embedded space.

—Technique 2. Shrinking towards the mean. For a fixed target ) , we hope to set 38 (6(x̃9) ))’s for different 8 to be
“similar” so that the total “function complexity” across all the models we learned becomes smaller, which
improves bias-variance tradeoff.

We also note that both techniques provide methods for measuring similarities (or distances) between pairs
of models trained from different source domains, as well as between a source domain and the target domain.
The distance measures derived from these techniques will be used in the ensemble learning component, which
operates outside the deep learning loop (see Section 4.5).
Construction of embedded space. Our goal is to bring the following two sets of points closer to the embedded

space:

{38 (6(x̃8 )) : x̃8 ∼ D8 (- )} and {38 (6((x̃) )) : x̃) ∼ D) (- )}.
We use the MMD to measure the statistical distance.

Definition 4.1. Let % = {?1, . . . , ?=} and & = {@1, . . . , @=}. The MMD between % and & is

L<<3 (%,&) =







1B ∑
?∈%

q (?) − 1
C

∑
@∈&

q (@)








2

H

,

where H is the reproducing kernel Hilbert space (RKHS), and the q (·) denotes a feature map to map the
inputs to the H , which is achieved by a kernel : (%,&) = 〈q (%), q (&)〉

Our algorithm uses the Gaussian Radial Basis Function (RBF) kernel: : (D, E) = exp(−_‖D − E ‖2) for H .
Also, let ?8 = {38 (6(x̃8 ))}8∈= be the feature representations for domain 8 at branch 8 , and @8 = {38 (6(x̃) )}8∈= be
the feature representations for the target at branch 8 . We let

L<<3 =
1
=

∑
8∈[=]

L<<3 (?8 , @8 ).

!<<3 aggregates the distance of each pair source-target domain. By minimizing theL<<3 , each domain-specific
adaptor 38 (·) would be able to map the x̃8 and x̃) into similar representations.
Shrink Towards the Mean. We impose global constraints over 38 (·)’s. We want that 38 (·)’s to shrink towards

the same function to achieve improved bias-variance tradeoffs. Specifically, if models shrink towards the same
one, data would be sufficient to train a model, but the model will not be expressive enough to have reasonable
forecasting power. If we do not shrink at all, there are way too many models to be learned to reduce bias and
increase variance.
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We leverage the CR [33] based on L1 distance to achieve this target.

Definition 4.2. The L2>= measures the L1 distance between the outputs of each pair of domain-specific adaptors,
which can be formulated as:

L2>= =
1

= × (= − 1)

=−1∑
9=1

=∑
8=9+1

∑
x̃) ∈D) (- )

|38 (6(x̃) )) − 3 9 (6(x̃) )) |.

The effectiveness of CR in alleviating over-fitting is analyzed in Section 5.3.2. In an alternative view, the CR
reduces the domain divergence of each pair of the source-source domain, and the MMD reduces the domain
divergence of each pair of the source-target domain.

We use L<<3 and L2>= developed above together with the standard cross-entropy loss L2;B to construct the
final loss function. Recall that

L2;B =
1
=

=∑
8=1

B8∑
9=1

� (� (38 (6(x̃98 ))), ~
9

8
),

where � (·) is the Softmax function, and � (·, ·) is the cross-entropy loss function. Our final goal is to minimize the
following loss function:

L = _L<<3 + (1 − _)L2>= + L2;B ,

where _ is a constant value to balance two loss functions and we set it to 0.5. We remark that specific details
of our cost function can be tweaked. For example, L<<3 can be replaced by CORAL [49, 50] or GAN-based
loss, whereas ℓ2-loss can replace L2>= . Our experiments find that making these minor changes does not result in
additional performance gain.

4.5 Adaptive Ensemble Learning
4.5.1 Ensemble Learning. This section explains our ensemble learning procedure. Our consolidated forecast is

a linear combination of = ensembles

6̃(x̃) ) =
=∑
8=1

l838 (6(x̃) )), (1)

where l8 ’s are uniform weights, i.e., l8 = 1
=
, for 8 ∈ =, or adaptive weights. Uniform weighted consolidated

prediction is the default option for ensemble learning. We develop an adaptive weight assignment technique to
achieve better prediction consolidation. Note also that we use a standard convention to represent the output
of classifiers, i.e., 38 (x) outputs a probability measure in R< , where< is the number of categories and the 9th
coordinate/component in the output represents the probability that the output is in category 9 (estimated by
38 ). Therefore, 6̃(·) ∈ R< . In evaluation, we assume that 6̃(·) picks up the category with the highest probability
estimate.

4.5.2 Adaptive Weight Assignment. Source domains have different approximations of the target domain.
Assigning a higher weight l8 to a domain-specific model 8 benefits consolidated forecasting. Therefore, our goal
is to learn l8 without labels from the target domain.
Design Intuition. Our algorithm for determining l8 ’s need to (i) utilize the observation that having more

ensembles is not always better, and (ii) ensure that l8 ’s dynamically change according to the target; using static
target-oblivious weights is ineffective.

When labels are available, estimating l8 is a simple regression problem. Here, we build our solution by
unwinding key intuitions of solving a (possibly over-parametrized) linear regression and “re-implement” these
intuitions in the no-label setting by using information-theoretic tools. Let us first briefly review the linear
regression problem. Recall that the (ordinary least squares) OLS coefficient estimator is (--T)−1-T~, which
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Fig. 6. The adaptive ensemble learning procedure. (a) Distance Matrix�: � is symmetric. Each element �8, 9 represents the L1
distance between 38 (6(x̃) )) and 3 9 (6(x̃) )). Note that when 8 = 9 , �8, 9 = 0. (b) Entropy Vector : Each element is the entropy of
the corresponding row of �. The displayed values are min-max standardized. (c) Mask Vector l< : Element 1’s represent the
corresponding domain-adaptors as representatives. 0’s represent redundancy. (d) Similarity Vector lB : lB is transformed from
the outputs of L""� to measure the similarity of each source domain to the target domain. (e) Confidence Matrix : Each row
is produced by the � (38 (6(x̃C ))) to represent the prediction confidence over the labels.

consists of a feature-feature interaction (source-source interaction in our setting) component (--T)−1, and a
feature-response (source-target) interaction component -T~. Commonly used regularizations often “shrink” --T

to control variance-bias tradeoffs. For example, ridge regression shrinks--T towards identity, whereas principal
component regression (PCR) shrinks --T towards low-rank matrices.

We mimic the linear regression and design two subroutines to capture source-source interactions and source-
target interactions. The component using source-source interactions prunes away ineffective models, resembling
pruning away inconsequential subspaces in PCR, whereas the component using source-target interactions further
fine-tunes model weights.

(1) Source-source interaction: entropy-driven representative election. Here, our goal is to identify a subset of
orthogonal signals that resemble variable selections in PCR. Recall that PCR selects a subset of orthogonal vectors
as regressors. We aim to generalize the notion of orthogonality but the models 38 (·)’s are non-linear so standard
PCR techniques do not work. Instead, we re-utilize the CR measures introduced in Section 4.4. Recall that the
CR defines the distance between each pair of 38 (6(x̃) ))’s, which outputs a = × = symmetric similarity matrix �
(Figure 6(a)), where

�8, 9 =
∑

x̃) ∈D) (- )
|38 (6(x̃) ) − 3 9 (6(x̃) )) |.

We prefer a model 8 whose distances to other models are uniform (i.e., generalizing orthogonality), and we use
entropy to measure the orthogonality. Specifically, let the entropy associated with model 8 be

∑
9∈[=] −�8, 9 log�8, 9 ,

which is maximized when �8, 9 are the same for different 9 ’s. We then choose the models with the largest
entropy (either using the top-: rule or through thresholding after min-max standardization). A mask vector
l< ∈ R= is generated to indicate whether each individual model is selected. See Figure 6(b) and (c). Both top-:
and thresholding rules require a pre-defined hyper-parameter that controls the aggressiveness of the pruning
operation. Section 5.3.3 presents a parameter sensitivity analysis to show the robustness of our method.

(2) Source-target interaction: adaptive ensemble prediction. We next explain how we use source-target interaction.
The MMD distance measures the distances 38 (6(G8 )) and 38 (6(G) )) in the RKHS. I.e., the distance between the 8th
source domain to the target domain. We leverage the MMD distance to generate the similarity vector lB to assign
more weights to the more similar domain-specific adaptor (Figure 6(d)). Compounding with the l< , we obtain
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the weight vector l = l< · lB . Then the confidence matrix (Figure 6(e)) is retrieved to forecast the label for x̃)
according to Equation 1.

We remark that (i) our procedure depends on the target’s features (both l< and lB ) so the final weights
dynamically adapt to the structure of the target features. (ii) Existing adaptive ensemble methods require an
additional parameter that is updated during the training phase [27], whereas ours does not interfere with the
training procedure. Instead, it is a post-training method that directly adjusts the l8 based on the loss function.

4.6 Discussions
Our algorithm incorporates a function ℎ(·) crafted by domain experts to transform features, utilizing manually
built features. In contrast, existing works [57, 64] often leverage deep learning to autonomously learn ℎ(·). This
design decision is not arbitrary; rather, it stems from a discerned universal phenomenon prevalent in classification
problems involving the analysis of fine-grained muscle movements. Our conjecture posits that deep learning
models face challenges in learning semantically meaningful intermediate features crucial for accurate responses in
our domain. This conjecture is substantiated by comparing our problem with vision/NLP problems. In vision/NLP
tasks, deep learning models excel at identifying interpretable local patterns in lower layers, which are then utilized
for making predictions. For instance, convolutional layers in vision models extract local texture patterns, while
NLP models discern words/tokens with similar meanings. However, in our setting, deep learning proves less
effective in learning useful ‘local’ features from raw time-series sensor data [11].

To validate our conjecture, we design additional experiments where we task neural networks with predicting a
set of seemingly “simpler” tasks using raw data. If our conjecture held true, deep learning models would struggle to
predict these tasks. We define the “simple tasks” as manually built features, including simple statistics such as the
number of chews or the duration of each chew. We select two deep-learning models to predict the 65-dimensional
hard-crafted features. The first model comprises two LSTM layers with a dropout rate of 0.5, followed by a fully
connected layer for prediction. The second model, CoDATs, mirrors the original implementation but adjusts the
last fully connected layer based on the number of features. Both models employ MSE loss and the Adam optimizer
[24] with a learning rate of 0.5e-3. We split the dataset into 2,100 training samples and 608 test samples. We fix
each time-series sample to a length of 1,024 by padding zeros or truncating and use a batch size of 128. We use '2

metric to measure the regression performance.
Table 2 illustrates that deep learning models struggled to accurately predict hand-crafted features, even with

meticulous parameter tuning. While it might be feasible to fine-tune a neural network for predicting specific
features, using a single neural network architecture to predict a substantial portion of hand-crafted features
appears challenging. This underscores a fundamental difference between our problem and vision/NLP problems,
where a single architecture can typically extract a diverse set of “local features” such as various textures or the
meanings of many words.
Conclusion: The features x̃8 ’s and x̃) originate from vastly different distributions, presenting a formidable

challenge even for simple responses, such as the 65 extracted features. In light of this, mastering effective transfer
learning in the food typing task remains a complex endeavor. Our investigation strongly suggests that, given the
current landscape, relying on manually-built features proves to be a more efficacious approach. This observation
aligns with recent empirical findings [11], further emphasizing the ongoing difficulty in leveraging automated
methods to bridge the gap between diverse feature distributions.

5 Evaluation

5.1 Evaluation Methodology
This section evaluates our proposed DA method for the task of food typing. Specifically, we show that our
algorithm outperforms state-of-the-art baselines significantly. We also perform extensive experiments, including
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Table 3. Data Distribution of food-15

Nuts Gum Dry Fruit Fruits Pretzel Corn/Fry Cookie Vegetable Bread Meat Cream Total
User1 30 10 30 38 10 30 10 10 10 10 8 196
User2 30 10 29 30 10 21 10 10 10 10 1 171
User3 30 10 30 40 10 30 10 10 10 10 4 194
User4 30 10 30 39 10 28 10 10 10 9 8 194
User5 29 10 29 38 6 24 10 9 10 9 4 178
User6 30 10 30 40 10 27 9 9 8 10 4 187
User7 30 10 30 30 10 29 10 9 10 10 2 180
User8 30 10 30 40 10 27 10 10 10 10 8 195
User9 29 10 30 36 9 29 10 10 10 10 3 186
User10 29 10 30 36 10 30 10 0 10 10 6 181
User11 10 0 27 39 10 28 10 10 10 10 2 156
User12 28 8 27 38 9 21 10 10 10 1 1 163
User13 30 6 18 23 9 18 10 9 10 10 1 144
User14 29 10 30 37 10 28 10 10 9 10 3 186
User15 30 10 30 40 10 30 10 10 9 10 8 197
Total 424 134 430 544 143 400 149 136 146 139 63 2,708

The dataset includes 15 users and spans 11 food categories, comprising a total of 2,708 samples. Individual users contributed samples
ranging from 144 to 197, and each food type has 63–544 samples. Notably, User10 lacks samples for vegetables, and User11 has no
samples for gum.

ablation studies to analyze the roles and efficacy of different components in our pipeline. Moreover, we perform
open set MSDA evaluations to test the extensibility of our methods.

In our experimentation, we employ a rigorous evaluation technique known as Leave One User Out Cross-
Validation (LOOCV). LOOCV is a specialized form of cross-validation where the model is trained on all users
except one, and the excluded user serves as the target domain for validation. This process is iteratively repeated
until each user has been left out exactly once. LOOCV provides a robust assessment of the model’s generalization
performance, especially in scenarios where user-specific characteristics play a significant role.

5.1.1 Dataset. We use a standard benchmark human chewing datasets introduced in [55], namely food-15.
Comprising data from 15 participants, each engaging with up to 20 distinct types of food, this dataset captures
chewing activities via gyroscope and accelerometer sensors. For consistency and improved interpretability, we
adopt the categorization scheme proposed in [55], condensing the 20 food types into< = 11 categories. The
data summary is detailed in Table 3. This categorization proves advantageous for two primary reasons. Firstly,
from a clinical perspective, predicting food categories is often more meaningful than predicting individual types.
Secondly, the variation in participants’ dietary habits, such as one individual consuming almonds while another
opts for peanuts. Both almonds and peanuts fall under the “Nuts” category. Predicting unseen labels (food types)
for the target users is a non-scope in this work.

5.1.2 Baseline Methods. We examine a wide range of baselines, including a domain expert model without DA
[55], marked as No-Ada, three single-source DA methods: CORAL [49], TCA [38], DANN [14], and six MSDA
methods: DARN [56], MDMN [27], M3SDA [39], MDAN [60], MuLANN [45], CoDATs [57]. Section 2 reviews these
baselines. Table 4 also compares their key characteristics against our algorithm. CoDATs [57] distinguishes itself
by utilizing raw time series datasets from sensors. In contrast, the remaining baselines were originally devised for
recognition problems other than food type, such as vision and natural language processing. It is not obvious how
we can effectively pipe an architecture for time series with these solutions. Thus, we feed the 65-dimensional
hand-crafted features to these baselines. To maintain consistency in our experiments, we employ the same set of
neural network hyperparameters (e.g., number of hidden nodes, number of layers) for both baselines and our
proposed method. This practice enables us to control the impact of model complexity, mitigating concerns of
overfitting or underfitting. Adapting single-source DA methods to the multi-source setting introduces additional
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Table 4. Comparison of Our Method (Ours) and Nine State-of-the-Art Baselines

Work Feature extraction Domain-invariant
feature transform Adaptation target Ensemble scheme

Single-source DA

1. CORAL [49] Domain knowledge A1. Data Source-Target Source-combined
2. TCA [38] Domain knowledge A1. Data Source-Target Source-combined
3. DANN [14] Domain knowledge A2. Model Source-Target Uniform weight

Multi-source DA

4. DARN [56] Domain knowledge A2. Model Source-Target Dynamic weight
5. MDMN [27] Domain knowledge A2. Model Source-Target, Source-Source Dynamic weight
6. M3SDA [39] Domain knowledge A2. Model Source-Target, Source-Source Model accuracy weight
7. MDAN [60] Domain knowledge A2. Model Source-Target Dynamic weight
8. MuLANN [45] Domain knowledge A2. Model Source-Target Source-combined
9. CoDATs [57] Data-driven A2. Model Source-Target Source-combined
Ours Domain knowledge A1. Data, A2. Model Source-Target, Source-Source Dynamic weight

A1. Data represents manipulating data to align to different domains without innovating model architecture/loss function, and A2. Model
represents a method that has innovated model architecture/loss function, see Section 3. Domain knowledge-guided feature extraction means
a baseline using hand-crafted features. Data-driven feature extraction methods use NNs to learn representations on raw time series data.

challenges. For No-Ada, CORAL, and TCA, we merge all source data to create a large joint source dataset as the
training data. In the case of DANN, we adhere to its single-domain scheme by training individual models on each
source-target pair and subsequently ensembling the models with uniform weights. This approach aligns with
methodologies applied in prior works [39, 56, 60].

5.1.3 Lower and Upper Bounds. To put the numbers into context, we also present lower and upper bounds
of DA performance for this dataset. The lower bound is defined as the performance of a “strawman” model, in
which all data from different sources are used to train one single model, and the model is used to predict data
from an unseen target, a.k.a., a “no adaptation” solution. This is the default approach for ML modeling. The upper
bound is constructed as training a model with the knowledge of the target’s labels (i.e., a “target only” model). The
upper bound represents the behavior of typical ML models in an (excessively) ideal world, whereas the lower
bound represents the performance of a model one would expect from a typical practitioner. The gap between the
lower and upper bounds reflects the performance surprise and is a good indicator of the “difficulties” of our DA
problem.

The lower bound trains an LSTM model on source-combined data without domain knowledge. The upper bound
approximation uses the MLP model from Wang et al. [55] because it outperforms other model families.

5.2 Overall Accuracy
Figure 7 compares the average accuracy of our method and baseline methods on each target domain of the food-15
dataset, respectively. Our method outperforms baseline methods in each target domain with a 1.33× to 2.13×
accuracy improvement. We also note while in general DA in food-type prediction problems is remarkably difficult,
performance on certain targets (e.g., participant 3) is quite close to the upper bound (a promising sign). It remains
an interesting open problem to understand when a participant is easy to predict.

The two methods that do not utilize source adaptation techniques, No-ada and LSTM, perform 22.8% and
38.5% worse than our approach, respectively, confirming the effectiveness of DA in predicting food types for
unseen users. The LSTM learns features from raw time-series data, while No-Ada relies on domain expert features,
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Fig. 7. Evaluating accuracy of our method (Ours) and nine state-of-the-art baselines. Here, the upper bound (MLP model
trained with labeled target domain data) is 82.3%, and the lower bound (LSTM model learns source-combined data without
domain knowledge) is 9% on average, drawn as two horizontal dashed red lines.

highlighting the robustness of manually extracted features in handling domain shifts. Moreover, compared with
CoDATS [57] (CNN on raw time series), our method extracts features with expert knowledge and is 25.2% better
on average, confirming the intuition of preferring not to use raw data (Section 4.6). TCA [38] and CORAL [49] use
only standard NN, and are 19.2% and 23.8% worse than us, respectively. Therefore, engineering NN is essential.
MDMN [27] and M3SDA [39] originally designed for computer visions, optimize source-source and source-target
divergence simultaneously and are the best baselines, also confirming the importance of reducing source-source
divergences (Section 3). They are nevertheless 11.8% and 12.7% worse than us, respectively. They do not have
stratified normalization or adaptive ensemble learning. The cost functions and architectures in our NN are also
different. We are 13.9% and 23.7% better than DANN [14] and MuLANN [45], which do not directly address
source-source divergence. We are also 14.7% and 22% better than DARN [56] and MDAN [60], respectively, which
couple ensemble-weight learning with deep learning (i.e., ensemble weights are part of the network, which could
potentially impact DL training in an adversarial manner), whereas we take a two-staged approach (i.e., learning
the ensemble weights after training the multi-source domain adaptor).

Fig. 8. Sum of the confusion matrix over the 15 users. Each
row in the matrix represents the true class, and each column
represents the predicted class, the prediction and ground truth
labels are annotated. The diagonal elements represent the cor-
rectly classified instances for each class, while off-diagonal
elements indicate misclassifications.

To delve deeper into the performance of the pro-
posed food typing methods in the face of domain di-
vergence challenges, we analyze the confusion matrix
as depicted in Figure 8. Notably, certain classes ex-
hibit a high degree of ease in being classified into each
other. For instance, classes such as “Nuts” and “Dry
Fruit” or “meat” and “bread” seem to be easily con-
fused, as evidenced by the relatively high numbers in
the corresponding off-diagonal elements.This suggests
a potential similarity or overlap in the features that
the model uses for classification between these pairs
of classes. Recognizing food types through chewing
behavior across different users remains a challenging
task. However, the presented work represents a signif-
icant stride toward a promising solution.

Our average accuracy is 47.5%, insufficiently close
to the “productization” level. Note also that there are
a total number of 11 classes, so a “null” model has a
9% accuracy. The problem we face appears to resemble
model development for ImageNet [10], which requires
multi-year effort to engineer a fully effective model
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(the most accurate model three years after ImageNet’s inception is only slightly over 60% [25]). We remark that
strawman’s (lower bound) performance is 9%, the best baseline is 35.7% (after substantial hyper-parameter tuning),
and ours is 47.5%, which represents a 5.28 multiplicative improvement. Our “delta” with the strawman is 1.44
times stronger than the delta of the best baselines and the strawman.

5.3 Ablation Study
Three components are vital to our model, including stratified normalization, architectures with MSDA (including
consensus regularizer), and adaptive ensembling. This section performs ablation studies to examine each compo-
nent’s effect. Note that the MMD technique handles source-target interaction and is widely deployed in modern
DA algorithms so we do not specifically examine this component for conciseness.

Fig. 9. Ablation study of our methods.

Overview. Figure 9 presents a bird’s eye view of model
performance after progressively adding each of the com-
ponents. Specifically, the red line represents the per-
formance evolution on average after adding the com-
ponents, whereas dots in different colors represent the
performance of individual users. After adding S-Norm,
the model improves by 9.66% on average. Then we add
uniform ensemble learning (Ensem.), which MSDA tech-
niques assume, the model further improves by 2.8%. Next
we add MSDA (MSD-adaptor), which consists of two
steps, including first adding all techniques except for the
CR, and then adding CR. We can see that the gross per-
formance improvement is 11.55% whereas the CR on its

own contributes 6.85% improvement. Finally, we add adaptive weights (Ada.weights) to replace uniform weights
in ensemble learning. We can see that while the average performance improvement is moderate, they are more
powerful for some targets (and never result in worse performance). The next part further examines/interprets
each individual technique in detail.

5.3.1 Interplay between Stratified Normalization and Ensemble Learning. Ensemble learning is the de facto
design to address the MSDA problem [51]. To study the interplay between S-Norm and ensemble learning, we
compare the following settings: uniform weight ensemble learning with or without S-Norm and combining
data from multiple domains to train one model, a.k.a., a “source-combined” model, with or without S-Norm.
Figure 10(a) shows the comparison results. It proves that S-Norm substantially improves model accuracy by
1.3× even without being integrated with ensemble learning. Integrating S-Norm with ensemble learning further
enhances the accuracy by 1.41×. It is interesting that applying ensemble learning only without S-Norm results in
an accuracy that is slightly worse than the non-ensemble version.

5.3.2 Multi-Source Domain Adaptor and Consensus Regularizer. All other techniques without consensus regu-
larizer. A substantial body of prior works has demonstrated the efficacy of multi-branch architecture (i.e., hard
parameter sharing layers reduce risks of overfitting [9, 43]) and the MMD [48, 53] cost function. Thus, it may
not be surprising that these techniques continue to work in our problem. The more worthwhile point is that
these techniques are additive, i.e., they can be integrated seamlessly with other innovations in our pipeline. To
study the effectiveness of a multi-branch structure, we compare it with a sequential MLP model. As Figure 10(b)
shows, the multi-branch structure model achieves higher accuracy than the sequential model. Most importantly,
a multi-branch model facilitates the integration of other DA designs, i.e., consensus regularize.
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Fig. 10. Normalized accuracy comparison with and without S-Norm, Ensemble, MSD-Adaptor, and CR.

Fig. 11. The efficacy of CR in alleviating overfitting.

Consensus Regularization. We further perform conver-
gence analysis for training and test sets to inspect the impact
of consensus regularizers. See Figure 11 for the training and
test accuracy using models with and without consensus reg-
ularizer. One can see that (i) the consensus regularizer slows
down the training process but eventually coincides with the
model without the regularizer. (ii) the test performance con-
tinues to improve over time even when the training errors
stall. These observations resemble behaviors of AdaBoost
[12], and it is an interesting open problem to understand
how they are connected. In addition, the reduction in the
training-test gap highlights the consensus regularizer’s ef-
ficacy in alleviating the overfitting problem.

5.3.3 Adaptive Weights Assignment in Ensemble Learning. The ensemble learning module includes an opti-
mization that adaptively assigns a weight to each domain-specific adaptor. Each adaptive weight consists of a
0–1 mask vector l< that decides if this domain-specific model is included in the ensemble and a fine-tuning
vector lB that measures the similarity between a source domain and the target domain in the embedded space.
As aforementioned (in Section 4.5.2), our method offers two ways to determine the value of l< : either a top-k
strategy (AE1, AE is short for Adaptive Ensemble) or a threshold-based strategy (AE2).

Figure 12(a) shows that our top-k strategy (i.e., AE1) consistently outperforms the default uniform weight
assignment and random selection in accuracy by an average value of 0.28% and 0.6%, respectively, for each eligible
parameter setting. Figure 12(b) studies the interaction between threshold value selection (in AE2) and the number
of representatives (i.e., selected domain-specific models). As Figure 12 shows, a higher threshold results in more
aggressive pruning, i.e. fewer representatives participate in predicting. This result also shows that selecting a
middle-range value of the threshold achieves the optimal improvement (1%) over the uniform weight assignment.
Users can select either AE1 or AE2 for their application (and dataset) based on a similar empirical study.

5.4 Open Set MSDA
Prior experiments assumed an ideal condition where each domain consumes the same type of food (except
for user 10 and user 11, refer to Table 3). This setting is commonly used by the research community [51, 61].
However, such a condition may not always exist in the real world. In this section, we address a more chal-
lenging scenario where each source domain only provides partial food types. This is formally defined as the
open set MSDA problem [61], where ~8 ∩ ~) ⊂ ~) . This setting is more challenging because the total amount
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Fig. 12. Parameter sensitivity analysis of adaptive weight selection in ensemble learning. (a) AE1 selects top-: representatives
that have the largest entropy value, where : ∈ {1, . . . , =}. (b) AE2 selects the representatives through thresholding. The
domain-specific adaptors that have a larger entropy value than the threshold will be elected as representatives. The left and
right axes show the interaction between the threshold and the number of representatives. We iteratively set the threshold
parameter from 0.05 to 0.95 with a step of 0.05 to test the accuracy. Both methods are robust to hyper-parameter settings and
have accuracy over the default ensemble method that assigns uniform weights to all domain-specific adaptors.

Fig. 13. Evaluating the accuracy of our method (Ours) and baselines under the open set configuration. Each user provides
approximately 50% of the labels.

Fig. 14. Breakdown study of the open set problem. Use different
proportions of labeled data to compare our method with the
best-performing baseline method.

of labeled data is reduced, and the target domain can
only learn a few food types from one specific user and
other food types from different users. Such a situation
could occur in real-world applications when extending
the model to recognize more food types, as new data
may need to be provided by different users.

To validate our methods in this setting, we modify
the dataset so that each user provides partial labels. For
example, user 1 provides labels with odd IDs, and user
2 provides labels with even IDs, meaning the model
can only learn approximately 50% of the food types
from each user. Figure 13 compares the average accu-
racy of our model with baseline methods under this
setting. Our method outperforms the baseline methods
with a 1.39× to 2.40× improvement, indicating that our

approach is extensible to incorporate more food types. Figure 14 presents a detailed analysis by varying the
percentage of food types provided by each source domain. Our method surpasses the best baseline by a range of
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1.37× to 1.82×. Although our method experiences accuracy losses, these are attributable to the reduced data size
under the open set configuration.

6 Conclusion and Future Work
This work develops the first MSDA method for food typing recognition, which consists of a pipeline with three
main components. First, the stratified normalization aligns the conditional and marginal distributions of features
to adapt to different domains, improving accuracy by 9.66% compared with a no-adaptation baseline. Second,
a multi-source domain adaptor is trained on the domain-aligned features to learn a generalizable classifier for
recognizing food types, incorporating a consensus regularizer and the MMD. This component further increases
accuracy by 11.55%. Finally, the adaptive ensemble weight selection prunes irrelevant sub-models of the multi-
source domain adaptor and fine-tunes the weights for ensembling, contributing an additional 0.68%-1% accuracy
improvement. Our evaluation empirically validates the importance of the consensus regularizer and domain
knowledge in providing generalizable forecasting through sensor signals. We compare our method with nine
state-of-the-art baselines to evaluate accuracy improvements in both closed set and open set MSDA problems,
demonstrating that our method achieves 1.33× to 2.13× and 1.39× to 2.40× accuracy improvements, respectively.

Based on the current study, our future work includes: (1) improving the model to achieve higher accuracy
and recognize a greater variety of food types in both closed set and open set MSDA problems, (2) extending
our method to more challenging problems, such as zero-shot MSDA, where target data are not available during
training.
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