FastFlow: Rapid Workflow Response By Prioritizing Critical Data
Flows and their Interactions

Jesun Sahariar Firoz Hyungro Lee Luanzheng Guo
Pacific Northwest National Pacific Northwest National Pacific Northwest National
Laboratory Laboratory Laboratory
Seattle, WA, USA Richland, WA, USA Richland, CA, USA
jesun.firoz@pnnl.gov hyungro.lee@pnnl.gov lenny.guo@pnnl.gov
Meng Tang Nathan R. Tallent Zhen Peng
Illinois Institute of Technology Pacific Northwest National Pacific Northwest National
Chicago Laboratory Laboratory
Chicago, IL, USA Future Computing Technologies Richland, CA, USA
mtangll@hawk.iit.edu Richland, WA, USA zhen.peng@pnnl.gov

tallent@pnnl.gov

Abstract

Scientists are automating instrument operation using distributed

scientific workflows. To improve workflow response time, we present
a new scheduling method called FastFlow. Although there has been

much prior work on scheduling, we introduce a new insight: prior-
itizing critical flow paths and their interactions—in/out flow paths—

enables a linear-time scheduling method that achieves high quality

results. Since many workflows are executed repeatedly, our method

is based on a monitor-analyze-optimize strategy. After monitor-
ing a workflow’s execution-time data flow, our method identifies

response-critical paths and their in/out data flows using a linear-
time partitioning algorithm. For each partition, a greedy linear-time

scheduler selects between the better of flow parallelism and flow

locality. The resulting schedules are high quality because the greedy

decisions avoid delaying or shifting the critical flow. We evaluate a

range of representative workflows and compare against state-of-
the-art methods. Our experiments demonstrate mean speedups of

1.15%,3.5%,1.04x, and 1.07x compared to the next best, which are not

linear time. Compared to popular linear-time methods, speedups

are up to 1.28x, 87x, 1.4x, and 5x.

CCS Concepts

« General and reference — Performance; Measurement; « Com-
puting methodologies — Distributed computing methodolo-
gies; « Information systems — Distributed storage; Hierarchical
storage management.

Keywords

distributed workflows, data flow lifecycles, graph partitioning, re-
source assignment, storage bottlenecks

This work is licensed under a Creative Commons Attribution International
4.0 License.

SSDBM 2025, Columbus, OH, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1462-7/25/06
https://doi.org/10.1145/3733723.3733735

ACM Reference Format:

Jesun Sahariar Firoz, Hyungro Lee, Luanzheng Guo, Meng Tang, Nathan
R. Tallent, and Zhen Peng. 2025. FastFlow: Rapid Workflow Response By
Prioritizing Critical Data Flows and their Interactions. In The International
Conference on Scalable Scientific Data Management 2025 (SSDBM 2025), June
23-25, 2025, Columbus, OH, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3733723.3733735

1 Introduction

To increase the pace of scientific discovery, scientists are automating
instrument operation using control loops. These loops replace most
human decisions with a workflow composed of sub-applications —
AI/ML, data analytics, and numerical solvers — and large amounts
of data movement [13, 18, 22, 24, 43-45]. The faster these loops,
the faster the pace of experiments. The key bottleneck is rarely
with instruments but with the computational loop and its use of
compute units, data flow, or storage. Removing bottlenecks often
requires improved coordination and resource assignment, i.e., the
combination of determining (a) allocation, or what resources to
allocate, (b) scheduling, or when tasks and data flow execute, and (c)
assignment, or the resources on which data flows and tasks execute.

Workflow managers and schedulers represent workflow exe-
cution using directed acyclic graphs (DAGs) of control and data
dependencies (cf. Figure 1). Prior work on scheduling and resource
assignment has prioritized different things: flow between DAG clus-
ters [23, 27, 29, 32-34, 46], critical paths [6, 14, 39, 42, 49, 50], or
data (locality, reuse, etc.) [19, 21, 28, 35, 47].

This paper introduces a new method of workflow scheduling
and resource assignment, named FastFlow, based on the following
insight: for each independent critical flow path, use a fast (locally
greedy) scheduler that uses the critical flow’s interactions—in/out
flow paths—to select between the better of flow parallelism and flow
locality. Figure 1 compares the results of FastFlow with two other
state-of-the-art methods, DFMan [16] and FaaSFlow [39]. Subfigure
(a) highlights a critical flow (green) and the interactions—in/out
flow paths (orange and blue)—that FastFlow prioritizes for sched-
uling. These interactions should also be prioritized—assigned to
sufficiently fast storage—so that critical flows are neither delayed
nor shifted. The challenge is doing this in linear time.

https://orcid.org/0000-0002-8174-2545
https://orcid.org/0000-0002-4221-7094
https://orcid.org/0000-0001-8266-0923
https://orcid.org/0009-0003-5995-6947
https://orcid.org/0000-0003-4297-3057
https://orcid.org/0000-0003-2431-6037
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3733723.3733735
https://doi.org/10.1145/3733723.3733735
https://doi.org/10.1145/3733723.3733735
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3733723.3733735&domain=pdf&date_stamp=2025-06-22

SSDBM 2025, June 23-25, 2025, Columbus, OH, USA

[.Task ~ Critical path _ Interactions []Data: fast local storage Data: global storage J

o000 ggg;

(c) FaaSFlow

(a) FastFlow

(b) DFMan

Figure 1: Comparison of FastFlow with state-of-the-art DF-
Man [16] and FaaSFlow [39]. Each approach schedules a di-
rected acyclic graph (DAG) where squares and circles denote
data and task vertices, respectively. (a) FastFlow assigns all
data to fast (local) storage (gray) in linear time. It reasons
about flow interactions—in/out flow paths (orange and blue
edges)—that may delay or shift the critical path. Independent
interaction sets form partitions (G-0 and G-1). The partitions
provide the “right” scheduling context for a local greedy
scheduler that selects the better of flow parallelism vs. data
locality, all while ensuring co-location of data flows and
tasks. (b) DFMan may place some data on slower global stor-
age (yellow/red), delaying the critical flow. DFMan prioritizes
consumer edges over interacting flows; and optimizes overall
data bandwidth rather than response time. (c) FaaSFlow pri-
oritizes tasks on the critical path but may introduce delays
(yellow/red) by scheduling tasks from the interacting flows
later. Finally, FastFlow’s partitions highlight flow parallelism
that neither DFMan nor FaaSFlow recognize.

Since many workflows are executed repeatedly, we use a monitor-
analyze-optimize strategy. The monitoring step (Section 2.1) obtains
a data flow lifecycle graph (DFL), a DAG that highlights dynamic
data flow between tasks and is annotated with detailed flow statis-
tics. The analysis partitions the graph (Section 3; G-x in Figure 1(a))
by each independent critical flow path. Each partition contains a
critical flow (green edges) and the paths that may either delay the
flow or shift its criticality (orange and blue). We say that criticality
delays come from incoming paths; shifts from outgoing paths. Fi-
nally, each partition is optimized (Section 4) with a greedy scheduler
that further divides each partition into sets of producer-consumer
subpaths that are best assigned to the same compute, storage, and
flow resources. For each subpath set, the scheduler selects between
the better of flow parallelism and flow locality, guided by tradeoft
analysis (Section 5). The partitions (step 2) ensure that each set of
subpaths (step 3) are scheduled on the fastest possible local storage,
resulting in near-optimal data flows that cause the Figure’s speedup
on a difficult but important workflow. Unlike DFMan and FaaSFlow,
FastFlow’s partitioning and scheduling algorithm is linear in DFL
edges (given fixed resources). FastFlow will be open-sourced.

We evaluate (Section 6) FastFlow on representative workflows
and compare against workflow scheduling methods to optimize
critical paths (FaaSFlow [39], CPOP [49], and HEFT), data flows
(METIS [32, 33] and dagP [29]), and storage bandwidth (DFMan [16]).
Our experiments demonstrate geo-mean speedups of 1.15x, 3.5x,
1.04x,and 1.07x compared to next best (not linear time); and speedups

Jesun Sahariar Firoz, Hyungro Lee, Luanzheng Guo, Meng Tang, Nathan R. Tallent, and Zhen Peng

JH LT K-

Figure 2: A data flow lifecycle (DFL) graph, visualized as a
Sankey diagram. Flow edges (directed, left-to-right) connect
vertices representing tasks (red) and data (blue). This DFL’s
edges show flow volume (thickness). Purple edges show a
critical path. This DFL shows one partition (green rectangle)
with three segments (dotted purple).

of up to 1.28x, 87x, 1.4x, and 5x compared to popular linear-time
methods. FastFlow is linear time. Our contributions are:

e Fast method to improve a workflow’s resource allocation,
schedule, and resource assignment by focusing on critical
data flow paths and their in/out interaction flows.

o Two-level workflow graph partitioning (linear in edges) cre-
ating (a) path groups and (b) sets of subpaths that enable
reasoning about the impact of critical flows and their depen-
dent producer-consumers.

o Scheduling that selects between the better of biasing flow
parallelism or flow locality. The tradeoff analysis accounts
for I/O operation type, pattern, and size.

e Evaluation on workflows with different characteristics and
comparison against state-of-the-art methods.

2 Overview

Our method, called FastFlow, introduces a fast (linear-time) method
to improve data flow along both entire flow paths and their indi-
vidual producer-consumers. Since many workflows are executed
repeatedly, it adopts a monitor-analyze-optimize strategy where
monitoring and re-scheduling can be amortized over repeated exe-
cutions.

2.1 Characterizing critical data flows

FastFlow leverages a monitoring tool that obtains a graph repre-
sentation, called a data flow lifecycle graph [35], that highlights
dynamic data flow between tasks. Workflows are commonly repre-
sented using directed acyclic graphs (DAGs) of tasks. A data flow
lifecycle graph [35] enriches task DAGs with data objects and prop-
erties that describe data flow and how tasks depend on that flow.
Figure 2 shows an example; flow proceeds from left to right. Within
the DFL graph, data flows are composed of producer-consumer
relations that can differ by inflow and outflow parallelism. Data
flow corresponds to an edge: a producer is an edge from task to
data vertex; a consumer is the reverse. A producer-consumer flow
(two edges) is semantically distinct from I/O operations because
it represents generation and consumption of the same datum. All

FastFlow: Rapid Workflow Response By Prioritizing Critical Data Flows and their Interactions

graph components, including data vertices and flow edges, are an-
notated with property values representing execution statistics such
as execution time, data access type, size, rates, reuse, etc. These
annotations guide our tradeoff analysis and scheduling.

2.2 Guidance from critical flows and their
interactions

Our analysis then partitions the DFL graph. Consider Figure 1. Each
partition (G-x) consists of an independent critical flow path (green
edges) and its interacting paths (orange and blue), i.e., the in/out
paths that may either delay or shift its criticality. The interactions
should be prioritized during scheduling so that critical flows are
not delayed (yellow/red boxes). Within a partition, in/out interac-
tions identify data and flow locality that can be exploited when
assigned to fast storage, resulting in fast data flow. Areas with few
interactions between them can be scheduled for parallelism.

2.3 Scheduling and tradeoff analysis

Scheduling then assigns tasks and data to resources based on the
most beneficial of two strategies: maximize flow parallelism or flow
locality. In the process, it further sub-partitions each partition into
contiguous segments. Figure 2 shows partitions and segments. The
two-level partitioning informs scheduling by prioritizing the tasks
and data most likely to impact the critical flows. Partitions and
segments enable reasoning about flow parallelism and locality, each
flow’s dependencies, and the producer-consumer relations that are
most likely to impact response time. Thus, FastFlow’s schedule in
Figure 1 selects the fastest storage for each segment, unlike the
alternatives. Additionally, FastFlow’s partitioning and scheduling
are linear in graph edges, compared to the alternative approaches.

2.4 Modeling flows

To select between scheduling strategies (parallelism vs. locality)
and to determine the best flow resource (storage assignment for
data), it is necessary to project the performance of concurrent flows
within a segment. The projection should account not only for task
time, but also flow: data generation and consumption, including its
distinct operations and patterns. In our case, data flow occurs within
file systems, whether implicitly (shared) or explicitly (copies).
Our methodology leverages a one-time preparatory step that
creates a resource model for each workflow pattern and storage
resource. To model a storage resource, we employ ERT4IO [52] and
request models for distinct operation types (read vs. write), concur-
rency levels, and sizes. To model a workflow segment’s flow, we use
the DFL’s flow statistics for each producer and consumer, such as
expected concurrency, operation type, pattern, and operation size.

3 Caterpillar Partitioning

To form the right context for a local scheduler, we partition the
DFL. To partition, we find the critical path, the longest path in a
directed acyclic graph that dictates final workflow response time.
Next, we find the path’s nearby interactions by forming the path’s
corresponding caterpillar tree [2, 20, 26, 35] that includes (a) for
a data node, the (distance 1) consumer task; (b) for a task, the
(distance 1) vertices from (to) its incoming (and outgoing) data;
and the (distance 2) paths to subsequent (and dependent) tasks if

SSDBM 2025, June 23-25, 2025, Columbus, OH, USA

et

Figure 3: Comparing DFL critical path (gold edges), caterpillar
tree (gold and green) and grove (gold, green and violet edges).
Vertices along the edges are included in the corresponding
graph structure. Blue rectangles denote data vertices; red
circles task vertices.

3
[X X

(b) (c)

Sotlectiits
det Wit

Figure 4: Partitioning a DFL graph via caterpillar DAGs. Crit-
ical path marked with gold edges. (a) A DFL graph (tasks
only); (b) corresponding partitions (green rectangles; G-0,
G-1, G-2); and c) acyclic partitions (black rectangles).

there is no join with the critical path. Finally, we extend the nearby
interactions into in/out paths with the caterpillar DAG. Intuitively, a
grove is the induction set of caterpillar trees implied by critical path.
Formally, a caterpillar DAG is a vertex-induced subgraph, rooted
at the starting vertex along the critical path, and the induction set
consists of all the (data and task) vertices reachable from the root,
as well as the task and data vertices on which any task vertex in
the reachability set depends on. Figure 3 compares a DFL graph’s
critical path, caterpillar tree and caterpillar grove.

Given a DFL graph G, partitioning decomposes it into a set £
of caterpillar DAGs. Our algorithm for partitioning is shown in
Algorithm 1. Figure 4(b) shows an example of caterpillar parti-
tions. Figure 4(c) compares ours with common acyclic hierarchical
methods [29, 46]. The acyclic partitioning “cuts” the critical flow,
something FastFlow’s partitions never do. Thus, acyclic partitioning
prioritizes scheduling by partition rather than critical flow.

The algorithm starts by identifying the most critical path in G,
shown in gold in Figure 4(b). To complete the partition, it constructs
the caterpillar DAG C along that path, or G-0. Next, it extracts C,
removing all of its vertices from G. Partitioning then proceeds to
the residual’s critical path and repeats until the residual is empty.
This step identifies G-1 as the next most important caterpillar DAG
in the residual graph. Finally, it completes with G-2.

The caterpillar partitions identify potential flow parallelism that
can be used to guide resource allocation/assignment (Section 4).
Specifically, Lines 5-10 detect whether the current caterpillar DAG
can be executed independently in parallel with other independent
caterpillar DAGs. Workflows frequently employ similar sets of
stages to concurrently process different datasets (e.g., chromosomes
in 1000 Genomes, color bands in Montage).

SSDBM 2025, June 23-25, 2025, Columbus, OH, USA

Jesun Sahariar Firoz, Hyungro Lee, Luanzheng Guo, Meng Tang, Nathan R. Tallent, and Zhen Peng

Algorithm 1: Decomposing a DFL into caterpillar DAGs
Input: A DFL graph, G(V, &)
Output: Caterpillar DAGs, $, ordered by their priorities

1 Gg(Vy, Eg) — G(V,E), P« 0 // priority queue for groves

2 while V,; # 0 do

3 | W «FindCritPath(Gy), C « FindCaterpillarGrove(‘W)

4 (Vl, &' — vertices and edges on C

5 foreach v € V' do // Find independent caterpillar DAG

6 Ei(v) « Ue(u,v) € &' Vu // incoming edges
7 E_(v) «Ue(v,w) € & Vw // outgoing edges
8 foreach e(i,v) € E+(v) do // Same for outgoing edges

9 ‘ ifi¢ V' then independent « false, break

10 | if independent then C.mark_independent «— true
1 | P.insert(C), Vy « Vy\ V', &g E4\ &
12 return P

The algorithm also ranks partitions for scheduling priority (Sec-
tion 4). Each partition’s priority is decided by a compound set of
metrics, including path length, maximum transferred data volume,
data reuse, and approximate flow rate. With other methods, many
near critical paths (FastFlow partitions), such as both of those in
Figure 4, are given equal priority.

4 Scheduling and Resource Assignment

After caterpillar partitions ¥ are prioritized, scheduling sub-partitions
each one into segments and assigns the segments to resources. This
two-level partitioning constrains the scheduling and assignment
problem and enables scheduling for the best of either flow paral-
lelism or data locality. The decisions are guided by tradeoff analysis
and models. The tradeoff analysis ensures each segment can execute
within the resource’s storage capacity constraints. The objective is
to improve overall response time.

Algorithm 2 shows the steps. The algorithm’s inputs are the DFL
partitions # and a resource availability matrix M. In the tradeoff
analysis, the DFL is used to characterize specific flows (Algorithm 2
lines 6, 8). The matrix is used to characterize available resources
and project performance of proposed flows. The matrix is generated
during modeling (Section 5).

The resource availability matrix has dimensions R X N, where
each row represents available resources and columns represent
an n-tuple describing each resource. The resources consist of a
combination of available compute node types and flow resources.
Specifically, the R resource tuples { compute X storage X I/O pat-
tern } represent computational and flow performance in terms of
compute cores, storage type and capacity, and flow performance
models that generate values in operations/s and bytes/s. Given
a producer or consumer flow, evaluation of the resource matrix
makes a performance decision for each resource.

The algorithm is based on the following realistic assumptions.
First, the algorithm cannot change task synchronization primitives,
such as would occur with fine-grained pipelining (e.g., converting
whole-file synchronization into push-pull sub-file transfers). Sec-
ond, the DFL graph is sufficiently representative of the execution.
We can ensure this by collecting DFLs on relevant workflow inputs.

Algorithm 2: Partitioning caterpillar DAGs into caterpillar segments

and assigning resources to them

Input: A DFL graph G(V, &), annotated with flow statistics,
caterpillar DAGs, P, a resource availability matrix
Mgy N for each caterpillar DAG and r resource
combinations.
Output: Caterpillar segments with assigned resources, S
1 S« 0, D « CreateMap(),l < 0 // l: level
2 foreach #; € P do

3 (V/, &' « vertices and edges on F;
4 PC {(Pj,C]—)l(pjk,cjkr) € 8/,pjk € Pj,cjk/ €Cj,V
producer-consumer (P-C) relation j and task k € #;}

5 | Vo« {ojlo; € q/l,in—degree(ni) =0} // Start from root
6 {Pr,Cr}1 — PC(V)) // get all PC relations in V;
7 | while PC # 0 do
8 pat — {f, dsz, fow} < FlowNum_DataSz_FlowBW({Py, Cr};)
9 r : {cores, storage,, bw} < FindBestResource(M, pat)
10 if f; > corey ords; > storageg, or fi,, > bwthen
11 t «— min{fe/core., dsz/storageg,, fow/bw}
12 taskgroup «— {gq,d =0,1,...t}, where

9d — {(ij’cjk'),Vk €0,1,...,groupsize}
13 D « UpdateDataReuseInfo(D)
14 strategy < AnalyzeTradeoffs(r, taskgroup, D)
15 if strategy == maximize_flow_locality then
16 ‘ S.append(GrowSegHorizontallyAndAssign_local())
17 else
18 ‘ S.append(GrowSegHorizontallyAndAssign_dist())
19 else
20 GrowSegVerticallyAndAssign()
21 if PC == 0 then S.append(current-segment)
22 Adjust(l), PC «— PC\{P,,Cr-};
23 Vi « {ovj|v; € V', o€ neighbor-list(Cy) },

{Pr.C:Hi = PC(VY)

24 return S

Note that the DFL can be dynamic as long as it is constrained. Fi-
nally, there is a fixed and sufficient (i.e., minimum) pool of resources
for the duration of execution.

Partitioning caterpillar DAGs into segments. A critical step is par-
titioning caterpillar DAGs into segments. A caterpillar segment is a
grouping of several sub-paths, each of consecutive tasks, whose sub-
flows may benefit from increased data locality (vs. increased par-
allelism). For each caterpillar DAG ¥, the algorithm traverses the
DAG’s vertices in a top-down, level-by-level fashion (breadth-first
search order), starting from the root. On each level, the algorithm
decides whether to grow or close a segment. Segments can grow
vertically or horizontally. Assuming that paths proceed top-down,
vertical segmentation is dictated by the number of consecutive tasks
(spanning multiple levels) that benefit from co-location. Horizontal
segmentation is dictated by the best number of paths that can be
packed on a single compute resource without exceeding the local
storage capacity and flow rate constraints.

At level [, the algorithm considers the next one or two consecu-
tive levels [+1 and [+ 2, depending on the vertex type (task or data).
To make a decision at level [for task vertex types, the algorithm

FastFlow: Rapid Workflow Response By Prioritizing Critical Data Flows and their Interactions

Stages Input D,

mProject
mDiffFit
mConc + mBgM |

1

mBackgrnd

mimgtbl+mAdd+mView,

(a) Two (of three) simplified color bands.

(b) caterpillar DAGs (G-x)

SSDBM 2025, June 23-25, 2025, Columbus, OH, USA

(c) Final caterpillar DAGs and segments (S-xy).

Figure 5: Caterpillar scheduling for a simplified Montage workflow. (Only selected task vertices are shown; and only initial
input data.) Yellow edges denote critical path; dashed blue edges, data reuse. caterpillar DAGs are labeled G-x; segments S-xy.

gathers (i) the set of flow edges Ep for each producer relation £,
connected to the next level [+1, (ii) the set of flow edges E¢ for each
consumer relation C, from data at [+ 1 to tasks at level [+ 2. The
maximum cardinality of these sets dictates how many tasks should
be launched in parallel for maximum achievable concurrency. The
sets also dictate the total required storage capacity and maximum
achievable flow intensity for the current segment (Line 8).

The growth decision is now made. Using each Ep € #, and E¢ €
Cr, the algorithm calculates the total required compute resources,
storage capacity, and flow intensity. It then determines how many
of these compound edges (i.e., producer-data-consumer) can be
scheduled on one compute node (a) for vertical growth or (b) for
horizontal growth, without violating either a node’s storage capacity
or maximum available flow rate. Let us assume that the number of
such edges is t. These edges and their associated tasks will form
one caterpillar segment.

Since growth decisions are made incrementally, subsequent it-
erations of the algorithm continue to either augment or end an
existing segment. Once required resources exceed a node’s storage
capacity or compute/flow benefits, growth ends (Lines 20-21) and
a new segment is created.

Scheduling strategies. After partitioning each caterpillar DAG
into segments, the algorithm then performs a trade-off analysis
between two scheduling strategies (line 14). The maximize paral-
lelism strategy spreads segments across multiple nodes to execute
with maximum concurrency. The maximize flow locality strategy
assigns all segments to the same compute node, scheduling them
sequentially. In both cases, the segment’s costs account for requi-
site data flow, including any flow from segment-local storage to a
downstream location.

Data reuse. Uniquely, our algorithm accounts for data reuse
(Line 13) between and within tasks in its cost-benefit analysis. Reuse
within tasks is captured by the DFL’s footprint metric that dis-
tinguishes unique data vs. accessed data. Understanding reuse is
important for accurately estimating the impact of the flow-locality
strategy. With accurate estimates, the algorithm selects the appro-
priate growth and scheduling strategy accordingly (Lines 15-18).

Complexity. Assume there are a total of ¢ caterpillar DAGs. For
each caterpillar DAG, finding the critical flow takes O(V;), where
V; is the total number of task vertices in G. Next, grouping into the
caterpillar segments takes O(E) time, where E is the total number of

edges in G. Assignment of resources to all the groups takes O(ER)
time, where r is the resource combinations. The time complexity of
the algorithm is thus O(V; + ER) ~ O(ER). Since R is often bounded
by 100, in practice complexity is linear in E.

Example. Figure 5 shows an example for Montage, a workflow
that constructs one large image from many small ones while pro-
cessing color bands (cf. Section 6.2). The figure shows, for two (of
three) color bands, the DFL graph (Figure 5a), caterpillar DAGs
(Figure 5b), and caterpillar segments (Figure 5c) that result from
scheduling.

For caterpillar DAGs, Algorithm 1 first identifies 3 caterpillar
DAGs, each corresponding to a color band. Figure 5a shows two
caterpillar DAGs (marked as G-0 and G-1). The caterpillar DAG for
the other band is identical.

For caterpillar segment decomposition, Algorithm 2 next finds
caterpillar segments where, for each caterpillar segment, its tasks/-
data are assigned to execute using a single compute node’s best
matching flow/storage. As shown in Figure 5b, segmentation of
G-0 results in segments S-00, S-01 and S-02. S-00 and S-01 are
instances of horizontal segmentation. The trade-off analysis then
decides that S-00 and S-01 will be scheduled to maximize paral-
lelism, i.e., distributed across two compute nodes with required flow
resources. S-02 is an instance of vertical segmentation, spanning
across multiple levels of the caterpillar DAG, capturing a series of
dependent tasks that benefits from co-location.

As an example of data reuse, the data generated by the producer
(mProject) at stage one is consumed by the mDiffFit tasks in
the second stage, as well as the mBackground tasks at forth stage
(dashed blue edges in Figure 5). Capturing the input data reuse infor-
mation by observing the out-edges from a source vertex to vertices
at a later stage (i.e., edges between mProject and mBackground
tasks) allows our algorithm to consider the feasibility of retaining
data for reuse during trade-off analysis and yields better assign-
ments.

5 Flow Tradeoff Analysis

This section describes our tradeoff analysis to make the scheduling
and assignment decisions for each caterpillar segment. Specifically,
the tradeoff analysis combines (a) a rich representation of individual
data flows as input passed to (b) performance modeling of data
flows based on the Empirical Roofline Tool for I/O (ERT4IO) [52].

SSDBM 2025, June 23-25, 2025, Columbus, OH, USA

Fan-in consumer flow rooflines (sequential, read)
1
2
— 5

=
o
o

\AZd

* (merge, 1)
+ (merge, 2)
» (merge, 5)

=
o
S

Flow Performance [OP/s
=
o

10-71075107°10-%1073107210"1 10°
Flow Operational Intensity [OP/Byte]
Figure 6: Modeling flow performance for the merge (con-
sumer) step in 1000 Genomes workflow (fan-in pattern).
Markers show consumer flow performance at different per-
node concurrencies (1, 2, or 5); each roofline represents max-
imum performance for the corresponding I/0 operation and
concurrency.

This allows us to model, compare, and project the performance
of distinguished flow (I/O) types/size by the tradeoff analysis. In
scheduling, each combination of storage resource and I/O pattern
forms one row of the scheduler’s resource matrix (Algorithm 2).

ERT4IO. ERT4IO is an empirical I/O Roofline model for data-
intensive workload analysis that models the correlation between
I/O operations per second (operational performance) and I/O op-
erations per byte (I/O operational intensity). This allows for I/O
performance analysis of concurrent/distributed flows that guide
tradeoff analysis to make (a) scheduling decisions that yield the
best flow parallelism and (b) resource assignments that increase
flow rates by selecting the right combination of compute units,
data flow, and storage. ERT4IO takes I/O characteristics as input,
tested on IOR benchmarks with a number of different specified
processes (flow concurrency), providing key insights into parallel
I/O performance and contention.

Collecting flow characteristics. We collect each caterpillar seg-
ment’s task and flow characteristics using the DFL, which are passed
to ERT4IO as input to generate insights into flow locality/concur-
rency and storage options. Particularly, the flow characteristics to
collect include flow type (sequential or random), direction (read or
write), count (number of operations), and bytes (amount of data
accessed). Further, we consider both individual flow edges and en-
tire paths. Models for data flows along paths are constructed from
straightforward composites of individual flows along the entire
path using sums and averages.

Modeling. We group flows by direction (read or write) with
ERT4IO roofline modeling. It is important to separate read (con-
sumer) and write (producer) flows because in-flows and out-flows
are semantically different: reads are blocking; writes are non-blocking
but may block with subsequent reads. Writes (when blocking) usu-
ally take longer than reads to complete within storage systems and
have different contention profiles. Some consumers may re-read
data or only read subsets of the total dataset; their access patterns
can range from contiguous (ordered data), chunked (HDF5 slices),
to random (databases).

Projecting. To make scheduling and assignment decisions we
project performance of a proposed flow concurrency using regres-
sion analysis based on actual flow performance. Note that our

Jesun Sahariar Firoz, Hyungro Lee, Luanzheng Guo, Meng Tang, Nathan R. Tallent, and Zhen Peng

projections are not designed to be exact but sufficiently good to
guide the scheduler’s decisions. First, with the collected I/O statis-
tics, we can plot the performance curve of the actual flows with
different concurrency using the roofline model. The performance
curve can signal insights into the trend of performance with respect
to different flow concurrency. Using the performance curve, we
can project performance (OP/s) for a proposed flow concurrency
with different operational intensity (OP/Byte), which can help make
assignment decisions on concurrency/locality. For each storage re-
source, we also include a correctness check to assure that data fits
with capacity of that resource.
The coordinate is easily calculated from the individual flows:

o x value (OP/byte): total accesses (for all concurrent flows)
Vs. access size
e y value (OP/s): total accesses (above) vs. actual time

Second, using the flow roofline, we project performance for a
proposed flow concurrency and locality.

e x value (OP/byte): Given the new flow (derived from afore-
mentioned scaling rules), calculate the new ratio of total
accesses (OPs) vs. access size (bytes).

o y value (OP/s): As we already have total accesses, the key is a
new time. We obtain a new time by scaling the current time
with the closest matching roofline (by pattern/concurrency).

Example. Figure 6 shows an example performance model for
1000 Genomes’s merge consumer flows on local ramdisks. This
fan-in consumer has 10 merge tasks (at input 1000). The tradeoff
analysis considers different node parallelisms (2, 5, or 10 nodes),
resulting in three per-node flow concurrency options: 1, 2, and 5
(tasks per node). Although the I/O rooflines show little difference,
the markers for the flow pattern suggest that performance degrades
with higher concurrency. We can project the performance by re-
gression with the markers. The regression implication suggests
that performance degrades with higher concurrency. We can easily
project the performance of concurrency 10, which is likely perform-
ing worse than concurrency 5. The implication suggests that the
10 merge tasks should be scheduled with 1 task/node. Further, the
flow performance could benefit from more powerful compute (for
higher OP/s). The improved performance of FastFlow on 10 nodes
(Figure 10) shows the effectiveness of the flow models.

Insight. The flow roofline modeling yields valuable insights into
optimal flow parallelism, resource assignment decisions, and flow
resource (i.e., peak performance and bandwidth).

6 Evaluation

This section demonstrates the impact of FastFlow on distributed
scientific workflows. We apply our methodology to four representa-
tive workflows, namely Montage (Section 6.2), 1000 Genomes (Sec-
tion 6.3), DeepDriveMD (Section 6.4), and SRA Search (Section 6.5).
The workflows are complex, range from compute to data inten-
sive, and are used as baselines. We perform experiments with input
datasets of different sizes and also vary the number of compute
resources. We compare our approach with three relevant baseline
techniques discussed in Section 6.1 and demonstrate geo-mean
speedups of 1.15x, 3.5, 1.04x, and 1.07x compared to next best (not
linear time); and up to 1.28x, 87x, 1.4x, and 5% compared to popular
linear-time methods. Our evaluation uses the machines in Table 1.

FastFlow: Rapid Workflow Response By Prioritizing Critical Data Flows and their Interactions

Table 1: Machine configurations for experiments.

Machine Compute, Memory Storage options (notes)

CPU cLUSTER | 12x Intel SkyLake Xeon 6126 @2.60GHz; | NFS (default); Lustre; SSD (node); Ramdisk
1 192 GB (node)

CPU cLusTeR | 32x AMD EPYC 7543 @2.8GHzZ; 256 GB | NFS (default); BeeGES (w/ caching); SSD
2 (node); Ramdisk (node)

GPU cLUSTER | 32x AMD EPYC 7502 @2.5GHz; 6x | NFS (default); BeeGFS (w/ caching); SSD
NVIDIA A100; 256GB (node); Ramdisk (node)

Table 2: Comparison of scheduling approaches for experi-
ments.

Approach Strategy Complexity (V: vertices; E: edges)
DAGP/METIS Minimize edge cuts among acyclic partitions | O(V(V + E))
CPOP,HEFT Prioritize tasks on critical paths, tasks with | O(E)
earliest finish time
FaaSFLow Prioritize critical paths & patterns O(EI) (Iterations)
DFMaN Maximize I/O bandwidth O(CSTD)3" (Compute, Storage,
Tasks, Data)
FastFLow Optimize critical flows (caterpillars) schedul- | O(E)
ing

6.1 Baseline methodology

We compare FastFlow with several relevant baseline methodolo-
gies. Table 2 summarizes each method and its complexity. Observe
that FastFlow is linear time compared to the second-best methods
(FaaSFlow or DFMan).

dagP/METIS. The directed acyclic graph partitioning (dagP) [5,
29] approach partitions a given graph while minimizing the total
weights of the edges with endpoints in separate partitions. Com-
pared to the well-known METIS partitioner [33], dagP operates
on a directed graph and ensures that different partitions maintain
acyclic dependencies among them. For this approach, we assume
that datasets are hosted on the Parallel File System (PES). The result
is a baseline optimized by PFS whole-file data movement.

FaaSFlow [39], Critical-Path-on-a-Processor (CPOP), Heterogeneous-
Earliest-Finish-Time (HEFT). FaaSFlow [39] prioritizes tasks and
data locality along critical paths. Additionally, it includes a few sim-
ple fixed graph patterns for context. Note that FastFlow’s caterpillar
flows include the same context but are comprehensive and based
on a general and abstract method. The CPOP [49] and HEFT [49]
schemes prioritize based on variant definitions of critical path. Fre-
quently, FaaSFlow’s schedules are better than either because data
movement usually dominates the time of short tasks. We therefore
omit CPOP and HEFT.

DFMan. DFMan [16] assigns data to storage resources based on
data consumers (data-to-task edges) in the flow graph, ordered by
topological levels. The objective is to maximize overall I/O band-
width. The first iteration assigns one consumer per data file. Sub-
sequent iterations assign additional consumers to where its data
resides. To compare with DFMan, files are placed either on the
fastest node-local storage for non-shared data or on the shared file
system if multiple processes from different compute nodes require
data sharing (including intermediate data) to avoid data copies. Our
approach differs not only by minimizing response time, but also by
scheduling the combination of critical flows and their interacting
flows, according to both flow locality and parallelism.

SSDBM 2025, June 23-25, 2025, Columbus, OH, USA

6.2 Case study: Montage

Montage [4, 30] is a compute-intensive image processing toolkit
that combines a collection of astronomical images into composite
images (mosaics). As compute intensive, Montage is a challenge
for any methodology that emphasizes data flow. Given many small
image files (FITS format), Montage stitches them together into a
large re-projected and reorientation image.

Configurations. We consider three different resolutions of fits
image files to vary input sizes: 720x720 (small), 3600x3600 (medium),
and 7200x7200 (1large) pixels. Over the 3 color bands, we obtain 192
fits image files from the space telescope archive (STScl) ranging
from 2GB to 20GB in total input data sizes. We conduct experiments
on CPU cLUSTER 1 (Table 1).

Scheduling. Figure 5 shows the DFL graph, caterpillar DAGs
(caterpillar DAG), and caterpillar segments that result from Fast-
Flow’s scheduling and assignment. FastFlow identifies 3 caterpillar
DAGs, one for each of three color bands: red (G-0), blue (G-1), and
green. The caterpillars indicate an opportunity for independent
execution of each interrelated flow and then, for the final com-
bined output, flow parallelism. Within each caterpillar, the tradeoff
analysis identifies multiple horizontal segments (5-00, S-01) for
the first two stages (nProject and mDiffFit) that achieve the best
combination of parallelism and data locality. Additionally, the ver-
tical segment (S-02) recommends co-location of the producer-data-
consumer flow edges for multiple subsequent stages (spanning from
mConc stage to the final stage mView). Moreover, keeping the data
generated at a stage (nProject) on node-local storage for reusing
at a later stage (mBackground) is endorsed.

Results. Results comparing FastFlow’s recommendation with
other methods are shown in Figures 8a and 8b with the Digitized
Sky Survey (DSS2) data. Figure 7 shows the breakdown of the total
execution time for each stage on two compute nodes with the large
data size (7200x7200). As can be observed, FastFlow resultsina geo-
mean of 1.1x speedup for strong scaling medium dataset (Figure 8a)
and a geo-mean of 1.2x speedup with different dataset sizes compared
to dagP (Figure 8b). The performance gain can be attributed to three
things. First, co-location of the producer-consumer tasks — indi-
cated by caterpillar segments S-00 and S-01 (Figure 5b) — assigns
flows to the best resource. Second, the flow of several producer-
consumer stages (5-02) is increased (within storage constraints),
compared to the global file system. Third, the segments enable re-
tention and reuse of data generated at the mProject stage by the
later mBackground stage.

Figure 8a varies compute nodes for the medium dataset. Figure 8b
varies data sizes on 16 nodes. FaaSFlow is typically second. Unlike
FaaSFlow, FastFlow maximizes rates along critical flows. FastFlow’s
largest improvements occur for (a) larger datasets and (b) with
more compute nodes. Both trends can be explained with data flows.
For example, in Figure 8a the notable performance improvements
are obtained with more nodes (12.5% and 12.4% on 16 and 8 nodes
respectively) as it localizes flows efficiently without causing I/O
contention.

6.3 Case study: 1000 Genomes

1000 Genomes [1, 17] is a data-intensive bioinformatics workflow.
The workflow processes multiple chromosomes simultaneously

SSDBM 2025, June 23-25, 2025, Columbus, OH, USA

Jesun Sahariar Firoz, Hyungro Lee, Luanzheng Guo, Meng Tang, Nathan R. Tallent, and Zhen Peng

O 3

2300 10 6 2 40 400‘ ‘

g 3 30

=] 2 FastFlow
200 4 2 20

S 5 1 20 200 dagP/METIS

=] 1

3 100 2 1 10 FaaSFlow

o DFMan

w0 Stage 1 0 Stage 2 0 Stage 3 0 Stage 4 0 Stage 5 0 Stage 6 0 Stage 7 0 Stage 8 0 Total

(mproj) (mdiff) (mconc) (mbgmo) (mback) (mimgt) (madd) (mview)

Figure 7: Montage: Impact of scheduling methods on per-stage execution times for large dataset on 16 nodes.

° Fa.stFIow
400 dagP/METIS 1125
~ (o))
P FaaSFlow 1.1003
£ 300 o DFMan® =
= 1.075 =
£200{ g
E) . 1.05038
[} [7]
100 . 1.0254
L] L] L] O :
0 1.000
2 nodes 4 nodes 8 nodes 16 nodes
(a) Varying nodes for medium dataset.
400 °
—_ o
o o
2 300 129
£ ¥
S200{ ¢ :
*g . 1.1§
£ 100 o . . 2
L]
0 i 1.0

720x720 pixels 3600x3600 pixels 7200x7200 pixels
(small) (medium) (large)

Size of Axes (data size)
(b) Varying datasets on 16 nodes.

Figure 8: Montage: Impact of scheduling methods while vary-
ing nodes and dataset size, shown as execution time (bars) and
speedup vs. dagP (red dots). Horizontal line: dagP speedup =
1.0.

" sienpinipul

@
3
®

Mutations_overlap frequency <

(a) 1000 Genomes (b) DDMD

Figure 9: FastFlow decomposition.

using five distinct tasks with varying data split and aggregation
patterns.

Configurations. We consider three different input sizes for 1000
Genomes, namely 1000, 3000, and 6000. For all these datasets, 300
individuals, 10 individuals_merge, 10 sifting, 70 frequency
and 70 mutation_overlap task instances were deployed. All ex-
periments were conducted on CPU cLUSTER 2 (Table 1).

Scheduling. Figure 9(a) shows the DFL graph and the cater-
pillar DAG (grove) that results from FastFlow’s scheduling and

£10

2 , | 1000] 500 ‘

s, ‘ 2000 1000

c

e 500 100 250 |

5 i

9 .

S 0 Stage 0 0 Stage 1 0 Stage 2 0 Stage 3 0~ "Total
(staging) (indiv) (indiv_merge+sift) (mut_olap+freq)

Figure 10: 1000 Genomes: Impact of scheduling methods on
per-stage execution times, 10 nodes, input 1000. Same legend
as Figure 11.

9000 ° FastFlow 22n
£38000 dagP/METIS 20 D
v 7000 FaaSFlow 185
< 16
-5 6000 DFMan 14<
S 5000 ° 123
5 4000 N . 102
3 3000 . . 123
9] 6 9
% 2000 7 8

1000 o . . 2 ¥

0 2 5 10 0
#nodes
(a) Varying nodes for the input 1000.

—.2000{ | . 1o
2 12

1750 8
£ 1500 . 10
1250 . 8 =
© 1000 . o
+— 6 =]
3 750 .S
2 500 ° ° 9
w250 . . 2 8

0 1000 3000 6000 0
Input

(b) Varying inputs on 10 nodes.

Figure 11: 1000 Genomes: Impact of scheduling methods
while varying nodes and dataset size, shown as execution
time (bars) and speedup vs. dagP (red dots). Horizontal line:
dagP speedup = 1.0.

assignment. FastFlow places an entire pipeline for each individual
chromosome in a separate caterpillar DAG. The caterpillar DAG
indicates an opportunity for independent execution of interacting
critical flows, one for each of 10 chromosomes (one shown). The
tradeoff analysis determines that each flow should be scheduled
on a distinct compute node to maximize parallelism, data locality,
and flow rates. The new schedule finds the best assignment that
collocates multiple I/O metadata flow while avoids I/O contention
(cf.Section 5 for details).

Results. The results are shown in Figures 10, 11a and 11b. Fig-
ure 10 shows the per-stage breakdown with various scheduling

FastFlow: Rapid Workflow Response By Prioritizing Critical Data Flows and their Interactions

methods for comparison on 10 nodes with 1000 chromosomes. The
execution times vary substantially depending on the method. Fast-
Flow consistently outperforms all the baseline methods in all setups,
while DFMan often ranks as the second-best option. This outcome
is expected, as data flow is more important when compared to Mon-
tage. Note that dagP/METIS runs on PFES entirely. Even though it
doesn’t have data staging overhead, its performance suffers. The
FastFlow-based executions show 7x and 2.4x speedup compared
to FaaSFlow and DFMan, which are state-of-the-art scheduling ap-
proaches. The key reason is that FastFlow maximizes locality along
critical flows. That means all data, including inputs and subsequent
intermediate files, are on the fastest storage (RAM disks), reducing
movement costs and maximizing flow rates.

Figure 11b varies the input sizes and reports execution time and
speedup of different methods w.r.t. dagP/METIS on 10 compute
nodes. Even when the dataset size increases, FastFlow still shows
great performance improvement. This is because a larger perfor-
mance benefit is expected with larger input sizes as long as the data
can fit into node-local storage. In all cases, FastFlow outperforms
other scheduling approaches. Specifically, compared to the FaaS-
Flow and DFMan approaches, FastFlow-based execution runs 7x
and 2.4x faster, respectively.

Figure 11a reports the experimental results for strong scaling
with 1000 as input. The goal is to demonstrate the efficiency and
effectiveness of the flow resource model and tradeoff analysis. The
scheduling on 10 nodes, explicitly encouraged by FastFlow, out-
performs the executions on 2 and 5 nodes. Overall, performance
improves by up to 87x and 15.3x compared to the baselines on 2 and
5 nodes (discouraged by FastFlow).

6.4 Case study: DeepDriveMD

DeepDriveMD is a deep learning-driven molecular dynamics sim-
ulations workflow for protein folding [3, 36]. It consists of a four-
stage pipeline: simulation, aggregation, training and inference. The
default configuration targets throughput performance with large
chunks of work and long run times. We are interested in improving
response time.

Configurations. We consider three simulation time steps for
molecular dynamics to vary input data sizes: 100 picoseconds (ps),
500 ps, and 1000 ps as small, medium, and large, respectively. We
perform DeepDriveMD experiment on the BBA protein folding
system using GPU cLUSTER (Table 1) with CUDA in PyTorch for
the ML model.

Scheduling. Figure 9(b) shows the DFL graph and caterpillar
segments that result from FastFlow’s scheduling and assignment.
Simulation tasks are grouped according to resource constraints
and will be executed on multiple nodes (S-@ ... S-n). Once the
simulations complete, the subsequent aggregation, training, and
inference tasks execute in a single caterpillar segment (S-n+1).
FastFlow places data on faster on-node memory as much as possible,
while eliminating the need for committing to the PFS after each
stage and fetching data from the file system.

Results. Figure 12 shows the performance breakdown of the
various DeepDriveMD stages for medium dataset (500ps simulation
length) using 4 nodes. FastFlow executions are faster in all setups.
In terms of total execution time, FastFlow outperforms all other

SSDBM 2025, June 23-25, 2025, Columbus, OH, USA

\
J

< 4

g 200

2100 2 50 10

2 100

3

“ Ostage 1 Ostage 2 Ostage 3 Ostage 4 0 Total
(sim) (agg) (train) (infer)

Figure 12: DeepDriveMD: Impact of scheduling methods on
per-stage execution times, medium dataset, 4 nodes. Same
legend as Figure 13.

2.00
300 FastFlow
= dagP/METIS 175%
2 500 FaaSFlow 150
=] DFMan . s
c ° . 2
S 1252
3 100 . ° ° ®
Q [
3 3 1.00
° 0.75
100ps 500ps 1000ps
(small) (medium) (large)

Simulation length (data size)

(a) Varying datasets size on 4 nodes.

250 °

* l4c

£200 9
[0} ©
€ 1.3
:—:' 150 =
2 122
§100 o ° é
Q

X 50 . 1'1%

L]
0 1.0

12 GPUs 24 GPUs

(b) Varying GPUs for medium dataset.

Figure 13: DeepDriveMD: Impact of scheduling methods
while varying dataset size and GPUs, shown as execution
time (bars) and speedup vs. dagP (red dots). Horizontal line:
dagP speedup = 1.0.

methods, as evident from Figure 13a and Figure 13b, where we
vary the input dataset size and resources respectively. For both
of these Figures, the improvement is reported with respect to the
dagP/METIS method. From Figure 13a, it can be observed that, com-
pared to dagP/METIS, FastFlow achieves 1.3x, 1.4x, and 1.2x speedup
for small, medium, and large instances of datasets respectively. The
relative improvements are diminished as data size increases (28%
for medium size and 13% for large size). This is due to the fact that
longer simulation time (39 seconds out of 89 seconds, 42% of the
total execution time with the small data size; whereas 131 seconds
out of 241 seconds, 53% of the total execution time with the large
data size) in the simulation stage accounts for most of the total
execution time. Still, the data flow size from the simulation stage
(producer) is not large enough to fully benefit FastFlow’s scheduling
and assignment. We expect consistent improvement with a small
dataset running in an iterative version of the workflow instead of
running it with a single large dataset run.

Figure 13b reports the speedups achieved by FastFlow while
varying compute resources (2 and 4 compute nodes, each node has
6 GPUs) with DeepDriveMD medium dataset. FastFlow shows the

SSDBM 2025, June 23-25, 2025, Columbus, OH, USA

best speedup against all the other methods ranging from 1.14x to
1.46%, in which we observe better improvements with more nodes.
We observe that, compared to the second-best approach, DFMan,
FastFlow achieves a geo-mean of 1.04x speedups across all different
experimental settings.

6.5 Case study: SRA Search

SRA Search is a genomics workflow for aligning sequences to a ref-
erence genome [38]. The pipeline downloads (fasterqg-dump) sev-
eral FASTQ sequence files from the NCBI archive [9] and performs
per-file alignment (bowtie2) to find similar characters between the
sequence reads and the reference. Results are collected (merge) into
a single archive.

Configurations. We consider three groups of input data based
on read counts of individual sequencing files: less than 1.4 million
(small), 2.7 million (medium), and 5.2 million (large). For each
group of inputs, 192 SRA files are downloaded from NCBI and
distributed across CPU cLUSTER 1, where input sizes total 57GB,
122GB, and 236 GB for small, medium, and large, respectively.

Scheduling. Figure 9(c) shows the DFL graph and the segments
identified by FastFlow. In contrast to other workflows, file sizes
significantly vary for individual input files in the first and second
stages (FastQ and Bowtie2). The other baselines fail to recognize
this important aspect when distributing tasks from the same stage
with non-uniform input files in size. Both dagP and FaaSflow effec-
tively select a block distribution, over-burdening local I/O systems
by placing large files on the same flow resources. DFMan improves
over these two, but prioritizes global bandwidth rather than the
whole critical flow. In contrast, based on models and prioritization of
critical flows, FastFlow creates an assignment with an approximate
cyclic data distribution: first the largest files are evenly distributed
across flow resources, then the next set, and so on.

Results. Figure 14 shows the execution time breakdown for
each stage with a small dataset using 8 nodes, resulting in the
quickest execution time in total. Figure 15a and Figure 15b report the
speedups achieved by FastFlow as we vary the inputs and compute
resources, respectively.

Figure 15a shows speedups while varying compute nodes with
the small dataset. FastFlow achieves the best performance, 4.3x,
4.2x, 2.79x, and 2.8x speedups respectively. In Figure 15b, FastFlow
is 2.2x, 4.9x, and 2.4x faster compared to dagP/METIS, because of
overall increases in flow rates.

Besides its cyclic task-data distribution, there are additional rea-
sons for FastFlow’s improvement: (a) the access pattern of each SRA
input file is random, (b) the I/O request size varies significantly, (c)
as the problem size is scaled, so does the number of I/O accesses
and the size of the accesses. These characteristics imply that SRA
search’s data flow is latency-bound instead of bandwidth-bound.
FastFlow’s models of flow profiles and performance enable it to
reason about the impact of these characteristics on each proposed
schedule. FastFlow’s schedule balances not only flow payload, but
also flow requests across resources, improving the imbalance by 15%
compared to other baselines. Overall, compared to the second-best
approach (DFMan), FastFlow achieves a geo-mean speedup of 1.07x
across all different experimental settings.

Jesun Sahariar Firoz, Hyungro Lee, Luanzheng Guo, Meng Tang, Nathan R. Tallent, and Zhen Peng

G} 2

£1.0 200 200 400

£

c 1

S05 100 100 200

3

%

0.0 Stage 0 0 Stage 1 0 Stage 2 0 Stage 3 0 Total
(build) (fastq) (bowti) (merge)

Figure 14: SRA Search: Impact of scheduling methods on per-
stage execution times, small dataset, 8 nodes. Same legend
as Figure 15.

1000

L]
¢ e FastFlow 4o
« 800 dagP/METIS >
g © FaaSFlow ©
= 600 o DEMan 3 5
o
S 400 ® S
v 28
2 . v
& 200 . . &
L]
1
2 nodes 4 nodes 8 nodes 16 nodes
(a) Varying nodes for small dataset.

° 5
—_ . o
2600 3
(9] 4T
£ .
= c
< 400 2
g . s

3

$200 ° ° * |23
X A
w L] L] ()

= 1

<1.4M Reads <2.7M Reads <5.2M Reads
(small) (medium) (large)

Read Count (data size)
(b) Varying input dataset size on 16 nodes.

Figure 15: SRA Search: Impact of scheduling methods while
varying nodes and dataset size, shown as execution time
(bars) and speedup vs. dagP (red dots). Horizontal line: dagP
speedup = 1.0.

7 Related work

In contrast to data flow lifecycle analysis [35], our primary contri-
butions include: (a) an automated two-tier caterpillar partitioning
driven by caterpillar DAGs; (b) model-driven workflow schedul-
ing and resource allocation aimed at enhancing data flows and
reducing time-to-solution; and (c) showcasing the significance of
concurrently analyzing both the entire caterpillar DAG and its
dependent segments.

Data-centric Workflow Orchestration. Extensive research has been
conducted on data-centric workflow orchestration to reduce foot-
prints while maximizing locality and data reuse.

Select work includes: a) Compiler/program optimization [8, 10, 15,
48, 51], which progressively translates the high-level programming
languages to low-level machine code while leveraging program
semantics and attributes to apply optimization techniques like vec-
torization, loop tiling, kernel fusion, and prefetching for better data
locality and reuse.

b) Cloud/serverless computing [11, 31, 37, 39-41], which enables
data and resource locality-/reuse-aware techniques/optimizations,
such as caching, while coordinating tasks over cloud/serverless

FastFlow: Rapid Workflow Response By Prioritizing Critical Data Flows and their Interactions

workflows to minimize data transmission; and ¢) Distributed HPC
(FastFlow is along this line), which schedule dependent task and
data flows to the same location to maximize parallelism, data local-
ity, and reuse.

Locality. Locality has been a primary focus for workflow sched-
uling in HPC systems [16, 21, 28]. One notable work is DFMan [16],
which allocates workflow tasks to storage resources to maximize
global storage bandwidth. Besides complexity (Table 2) there are
three differences compared to our approach. First, DFMan opti-
mizes bandwidth rather than response time, potentially improving
bandwidth of non-critical paths and delaying critical ones. Secondly,
DFMan incrementally considers consumer edges in a topological
order, preventing it from reasoning about multiple flow paths simul-
taneously. In contrast, FastFlow considers multiple paths, where
each path can include many producers and consumers. Additionally,
FastFlow assesses whether each path group (segment) benefits more
from flow locality or parallelism. Finally, FastFlow uses models of
data flow that (a) capture both inter- and intra-task data locality,
and (b) distinguish between latency-bound (small random reads),
bandwidth-bound (large sequential writes), and contention-bound
(concurrent small operations).

Reuse. Data reuse is essential for minimizing data movement
from remote locations in distributed large-scale systems [19, 35,
47]. DAGUE [12] develops a workflow DAG scheduling scheme
with MPI for distributed computing, which uses a greedy strategy
to maximize parallel tasks on a NUMA node to improve locality
and data reuse. Pegasus [19] leverages a data catalog to capture
input/output and intermediate data staging for data reuse.

DAG-informed scheduling. Graph analysis such as critical paths
and min-flow/max-cut has been used for scheduling.

Critical path. Approaches prioritizing response time often utilize
different versions of the DAG’s critical path [7, 14, 42]. Noteworthy
algorithms include Heterogeneous Earliest-Finish-Time (HEFT) and
Critical-Path-on-a-Processor (CPOP) [49], and their various adap-
tations [33, 50]. HEFT schedules tasks by prioritizing those with
the earliest possible finish time, factoring in the task cost and the
subsequent critical path. Conversely, CPOP determines priorities
based on the entire critical path that intersects with a given task.
Lee et al. [35] pinpoint scheduling bottlenecks through data flow
analysis and DAG evaluation but do not propose scheduling.

Most relevant is FaaSFlow [39], a serverless scheduler for task
DAGs (workflows) that prioritizes critical-path locality and efficient
resource use. FaaSFlow schedules critical paths, assigned to DAG
partitions to the same worker to maximize locality, until resource
contention occurs. Its greedy and iterative partitioning strategy has
non-linear complexity. In contrast, FastFlow can craft faster sched-
ules using a linear-time algorithm because it may delay interactions
along the critical flow, which FastFlow captures using its caterpillar
partitions. By adopting a global view through caterpillar DAGs,
FastFlow achieves rapid and efficient segmentation. Additionally,
FastFlow employs a model-driven approach to prioritize critical
flows, balancing between locality and parallelism.

Min-flow/max-cut. Most scheduling methods that address the
min-flow/max-cut problem are NP-complete [25]. One widely-used
technique, METIS [32, 33], aims to minimize communication costs
in distributed parallel numerical simulations. Similarly, dagP [29]

SSDBM 2025, June 23-25, 2025, Columbus, OH, USA

identifies regions of many dependent flows, which tends to priori-
tize throughput over path response time.

8 Conclusions

This paper presented FastFlow, a novel methodology to improve
workflow response times by improving a workflow’s data flow via
scheduling and resource assignment. Our evaluation shows best-
in-class performance (1.15%, 3.5, 1.04x, and 1.07x compared to
the next best) across both compute and data-intensive workflows.
Further, FastFlow’s scheduling is linear time in comparison to the
next-best alternatives (Table 2).

We conclude that when optimizing a workflow’s response time,
it is important to understand critical flow paths and their interact-
ing in/out flow paths. That is, the global perspective of caterpillar
partitions and segments, based on interactions that may delay or
shift the critical path, has a unique ability to guide fast scheduling al-
gorithms. We further highlight three additional observations. First,
scheduling and resource assignment using caterpillar DAGs and
segments can effectively reduce response time. Second, these groves
and segments enable reasoning about beneficial flow parallelism
and locality. Finally, tradeoff analyis based on data flow statistics
for flow paths enable reasoning about data flow bottlenecks at both
the granularity of entire paths and individual producer-consumers.

Acknowledgments

This research is supported by the U.S. Department of Energy (DOE)
through the Office of Advanced Scientific Computing Research’s
“Orchestration for Distributed & Data-Intensive Scientific Explo-
ration” and the “Decentralized Data Mesh for Autonomous Mate-
rials Synthesis” AT SCALE LDRD at Pacific Northwest National
Laboratory. PNNL is operated by Battelle for the DOE under Con-
tract DE-AC05-76RL01830.

References

[1] [n.d]. 1000Genomes Workflow Git repo. https://github.com/pegasus-isi/
1000genome-workflow. Accessed: 2023-03-15.

[2] [n.d.]. Caterpillar tree. https://en.wikipedia.org/wiki/Caterpillar_tree. Accessed:
2023-03-15.

[3] [n.d]. DeepDriveMD Workflow Git repo.
collaboration/DeepDriveMD. Accessed: 2023-03-15.

[4] [n.d.]. Montage Workflow Git repo. https://github.com/wfcommons/pegasus-
instances/tree/master/montage. Accessed: 2023-03-15.

[5] [n.d.]. Multilevel Directed Acyclic Graph Partitioner (dagP). https://github.com/
GT-TDAlab/dagP/tree/master. Accessed: 2023-08-15.

[6] DongH. Ahn, Xiaohua Zhang, Jeffrey Mast, Stephen Herbein, Francesco Di Natale,
Dan Kirshner, Sam Ade Jacobs, Ian Karlin, Daniel J. Milroy, Bronis De Supinski,
Brian Van Essen, Jonathan Allen, and Felice C. Lightstone. 2022. Scalable Com-
position and Analysis Techniques for Massive Scientific Workflows. In 2022 IEEE
18th Intl. Conf. on e-Science. 32-43.

[7] Khaled Almi’ani and Young Choon Lee. 2016. Partitioning-Based Workflow
Scheduling in Clouds. In 2016 IEEE 30th Intl. Conf. on Advanced Information
Networking and Applications (AINA). 645-652. doi:10.1109/AINA.2016.83

[8] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. 2019. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In 2019 IEEE/ACM Intl. Symp. on Code Generation and Optimization
(CGO). IEEE, 193-205.

[9] Tanya Barrett, Stephen E Wilhite, Pierre Ledoux, Carlos Evangelista, Irene F

Kim, Maxim Tomashevsky, Kimberly A Marshall, Katherine H Phillippy, Patti M

Sherman, Michelle Holko, et al. 2012. NCBI GEO: archive for functional genomics

data sets—update. Nucleic acids research 41, D1 (2012), D991-D995.

Tal Ben-Nun, Johannes de Fine Licht, Alexandros N Ziogas, Timo Schneider, and

Torsten Hoefler. 2019. Stateful dataflow multigraphs: A data-centric model for

performance portability on heterogeneous architectures. In Proc. of the Intl. Conf.

for High Performance Computing, Networking, Storage and Analysis. 1-14.

https://github.com/radical-

[10

https://github.com/pegasus-isi/1000genome-workflow
https://github.com/pegasus-isi/1000genome-workflow
https://en.wikipedia.org/wiki/Caterpillar_tree
https://github.com/radical-collaboration/DeepDriveMD
https://github.com/radical-collaboration/DeepDriveMD
https://github.com/wfcommons/pegasus-instances/tree/master/montage
https://github.com/wfcommons/pegasus-instances/tree/master/montage
https://github.com/GT-TDAlab/dagP/tree/master
https://github.com/GT-TDAlab/dagP/tree/master
https://doi.org/10.1109/AINA.2016.83

SSDBM 2025, June 23-25, 2025, Columbus, OH, USA

[11] Marcel Blocher, Lin Wang, Patrick Eugster, and Max Schmidt. 2021. Switches for

HIRE: Resource scheduling for data center in-network computing. In Proc. of the
26th ACM Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems. 268-285.

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, Pierre
Lemarinier, and Jack Dongarra. 2012. DAGuE: A generic distributed DAG engine
for high performance computing. Parallel Comput. 38, 1-2 (2012), 37-51.
Alexander Brace, Shantenu Jha, Igor Yakushin, Hyungro Lee, Heng Ma, Anda
Trifan, Li Tan, Todd Munson, Matteo Turilli, Ian Foster, and Arvind Ramanathan.
2022. Coupling streaming Al and HPC ensembles to achieve 100-1000X faster
bio-molecular simulations. In 2022 IEEE Intl. Parallel and Distributed Processing
Symp. (IPDPS). IEEE.

Giorgio Buttazzo, Enrico Bini, and Yifan Wu. 2011. Partitioning Real-Time Appli-
cations Over Multicore Reservations. IEEE Transactions on Industrial Informatics
7,2(2011), 302-315. doi:10.1109/T11.2011.2123902

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM: An
automated End-to-End optimizing compiler for deep learning. In 13th USENIX
Symp. on Operating Systems Design and Impl. 578-594.

Fahim Chowdhury, Francesco Di Natale, Adam Moody, Kathryn Mohror, and
Weikuan Yu. 2022. DFMan: A Graph-based Optimization of Dataflow Scheduling
on High-Performance Computing Systems. In 2022 IEEE Intl. Parallel and Dis-
tributed Processing Symp. (IPDPS). 368-378. doi:10.1109/IPDPS53621.2022.00043
Laura Clarke, Xiangqun Zheng-Bradley, Richard Smith, Eugene Kulesha, Chunlin
Xiao, Iliana Toneva, Brendan Vaughan, Don Preuss, Rasko Leinonen, Martin
Shumway, et al. 2012. The 1000 Genomes Project: data management and commu-
nity access. Nature methods (2012).

Ferreira da Silva et al. 2024. Workflows Community Summit 2024: Future Trends
and Challenges in Scientific Workflows. doi:10.5281/zenodo.13844759

Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J.
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. 2015. Pegasus, a workflow management system for science
automation. Future Gener Comput Syst 46 (2015), 17-35.

Sherif El-Basil. 1987. Applications of caterpillar trees in chemistry and physics.
J. of mathematical chemistry 1, 2 (1987), 153-174.

Naznin Fauzia, Venmugil Elango, Mahesh Ravishankar, J. Ramanujam, Fabrice
Rastello, Atanas Rountev, Louis-Noél Pouchet, and P. Sadayappan. 2013. Beyond
Reuse Distance Analysis: Dynamic Analysis for Characterization of Data Locality
Potential. ACM Trans. Archit. Code Optim. 10, 4, Article 53 (dec 2013), 29 pages.
doi:10.1145/2541228.2555309

Rafael Ferreira da Silva, Rosa M. Badia, Deborah Bard, Ian T. Foster, Shantenu Jha,
and Frédéric Suter. 2024. Frontiers in Scientific Workflows: Pervasive Integration
With High-Performance Computing. Computer 57, 8 (2024), 36-44. doi:10.1109/
MC.2024.3401542

Charles M Fiduccia and Robert M Mattheyses. 1988. A linear-time heuristic for
improving network partitions. In Papers on Twenty-five years of electronic design
automation. 241-247.

Ryan D. Friese, Burcu O. Mutlu, Nathan R. Tallent, Joshua Suetterlein, and Jan
Strube. 2020. Effectively Using Remote I/O For Work Composition in Distributed
Workflows. In Proc. of the 2020 IEEE Intl. Conf. on Big Data. IEEE Computer
Society.

M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman.

Frank Harary and Allen J Schwenk. 1973. The number of caterpillars. Discrete
Mathematics 6, 4 (1973), 359-365.

Bruce Hendrickson, Robert W Leland, et al. 1995. A Multi-Level Algorithm For
Partitioning Graphs. SC 95, 28 (1995), 1-14.

Stephen Herbein, Dong H. Ahn, Don Lipari, Thomas RW. Scogland, Marc Stear-
man, Mark Grondona, Jim Garlick, Becky Springmeyer, and Michela Taufer. 2016.
Scalable I/O-Aware Job Scheduling for Burst Buffer Enabled HPC Clusters. In
Proc. of the 25th ACM Intl. Symp. on High-Performance Parallel and Distributed
Computing (Kyoto, Japan) (HPDC ’16). Association for Computing Machinery,
New York, NY, USA, 69-80. doi:10.1145/2907294.2907316

Julien Herrmann, M. Yusuf Ozkaya, Bora Ugar, Kamer Kaya, and Umit V.
Catalyiirek. 2019. Multilevel Algorithms for Acyclic Partitioning of Directed
Acyclic Graphs. SIAM Journal on Scientific Computing 41, 4 (2019), A2117-A2145.
Joseph C Jacob, Daniel S Katz, G Bruce Berriman, John C Good, Anastasia Laity,
Ewa Deelman, Carl Kesselman, Gurmeet Singh, Mei-Hui Su, Thomas Prince, et al.
2009. Montage: a grid portal and software toolkit for science-grade astronomical
image mosaicking. Intl. J. of Comp. Science & Engineering 4, 2 (2009), 73-87.
Hidehiro Kanemitsu, Kenji Kanai, Jiro Katto, and Hidenori Nakazato. 2021. A
containerized task clustering for scheduling workflows to utilize processors and
containers on clouds. J. of Supercomputing 77, 11 (2021), 12879-12923.

George Karypis and Vipin Kumar. 1995. Analysis of Multilevel Graph Partitioning.
In Proc. of the 1995 ACM/IEEE Conf. on Supercomputing (San Diego, California,
USA) (Supercomputing ’95). Association for Computing Machinery, New York,
NY, USA, 29-es. doi:10.1145/224170.224229

Jesun Sahariar Firoz, Hyungro Lee, Luanzheng Guo, Meng Tang, Nathan R. Tallent, and Zhen Peng

George Karypis and Vipin Kumar. 1998. A Fast and High Quality Mul-
tilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on Sci-
entific Computing 20, 1 (1998), 359-392. doi:10.1137/S1064827595287997
arXiv:https://doi.org/10.1137/5S1064827595287997

B. W. Kernighan and S. Lin. 1970. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal 49, 2 (1970), 291-307.

Hyungro Lee, Luanzheng Guo, Meng Tang, Jesun Firoz, Nathan Tallent, Anthony
Kougkas, and Xian-He Sun. 2023. Data Flow Lifecycles for Optimizing Workflow
Coordination. In Proc. of the Intl. Conf. for High Performance Computing, Network-
ing, Storage and Analysis (SuperComputing) (Denver, CO, USA) (SC °23). Associa-
tion for Computing Machinery, New York, NY, USA. doi:10.1145/3581784.3607104
Hyungro Lee, Matteo Turilli, Shantenu Jha, Debsindhu Bhowmik, Heng Ma,
and Arvind Ramanathan. 2019. Deepdrivemd: Deep-learning driven adaptive
molecular simulations for protein folding. In 2019 IEEE/ACM Third Workshop on
Deep Learning on Supercomputers (DLS). IEEE, 12-19.

Pawissanutt Lertpongrujikorn and Mohsen Amini Salehi. 2023. Object as a
service (0aas): Enabling object abstraction in serverless clouds. In 2023 IEEE 16th
Intl. Conf. on Cloud Computing (CLOUD). IEEE, 238-248.

Kyle Levi, Mats Rynge, Eroma Abeysinghe, and Robert A Edwards. 2018. Search-
ing the sequence read archive using Jetstream and Wrangler. In Proc. of the
practice and experience on advanced research computing. 1-7.

Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan Cheng, Wenli Zheng, and
Minyi Guo. 2022. Faasflow: Enable efficient workflow execution for function-
as-a-service. In Proc. of the 27th ACM Intl. Conf. on architectural support for
programming languages and operating systems. 782-796.

Zijun Li, Chuhao Xu, Quan Chen, Jieru Zhao, Chen Chen, and Minyi Guo. 2023.
DataFlower: Exploiting the Data-flow Paradigm for Serverless Workflow Or-
chestration. In Proc. of the 28th ACM Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Volume 4. 57-72.

Hadeer Mahmoud, Mostafa Thabet, Mohamed H Khafagy, and Fatma A Omara.
2021. An efficient load balancing technique for task scheduling in heterogeneous
cloud environment. Cluster Computing 24, 4 (2021), 3405-3419.

Ruben Mayer, Christian Mayer, and Larissa Laich. 2017. The Tensorflow Par-
titioning and Scheduling Problem: It’s the Critical Path!. In Proc. of the 1st
Workshop on Distributed Infrastructures for Deep Learning (Las Vegas, Nevada)
(DIDL ’17). Association for Computing Machinery, New York, NY, USA, 1-6.
doi:10.1145/3154842.3154843

Kshitij Mehta, Ashley Cliff, Frédéric Suter, Angelica M. Walker, Matthew Wolf,
Daniel Jacobson, and Scott Klasky. 2022. Running Ensemble Workflows at Ex-
treme Scale: Lessons Learned and Path Forward. In 2022 IEEE 18th Intl. Conf. on
e-Science. 284-294.

Andre Merzky, Matteo Turilli, Mikhail Titov, Aymen Al-Saadi, and Shantenu Jha.
2022. Design and Performance Characterization of RADICAL-Pilot on Leadership-
Class Platforms. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022),
818-829.

National Academies of Sciences, Engineering and Medicine. 2022. Automated
Research Workflows For Accelerated Discovery: Closing the Knowledge Discovery
Loop. The National Academies Press, Washington, DC. doi:10.17226/26532

M. Yusuf Ozkaya, Anne Benoit, and Umit V. Catalyiirek. 2020. Improving Locality-
Aware Scheduling with Acyclic Directed Graph Partitioning. In Parallel Processing
and Applied Mathematics, Roman Wyrzykowski, Ewa Deelman, Jack Dongarra,
and Konrad Karczewski (Eds.). Springer Intl. Publishing, Cham, 211-223.
Thanh Son Phung, Ben Clifford, Kyle Chard, and Douglas Thain. 2023. Maximizing
Data Utility for HPC Python Workflow Execution. In Proc. of the SC’23 Workshops
of The Intl. Conf. on High Performance Computing, Network, Storage, and Analysis.
637-640.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices 48, 6 (2013), 519-530.

H. Topcuoglu, S. Hariri, and Min-You Wu. 2002. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Transactions on
Parallel and Distributed Systems 13, 3 (2002), 260-274. doi:10.1109/71.993206
Baixuan Wu, Zheng Xiao, Peiying Lin, Zhuo Tang, and Kenli Li. 2023. Critical Path
Awareness Techniques for Large-Scale Graph Partitioning. IEEE Transactions on
Sustainable Computing 8, 3 (2023), 412-422. doi:10.1109/TSUSC.2023.3263172
Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,
and Saman Amarasinghe. 2018. Graphit: A high-performance graph dsl. Proc. of
the ACM on Programming Languages 2, OOPSLA (2018), 1-30.

Zhaobin Zhu, Niklas Bartelheimer, and Sarah Neuwirth. 2023. An Empirical
Roofline Model for Extreme-Scale I/O Workload Analysis. In 2023 IEEE Intl.
Parallel and Distributed Processing Symp. Workshops. 622-627. doi:10.1109/
IPDPSW59300.2023.00106

https://doi.org/10.1109/TII.2011.2123902
https://doi.org/10.1109/IPDPS53621.2022.00043
https://doi.org/10.5281/zenodo.13844759
https://doi.org/10.1145/2541228.2555309
https://doi.org/10.1109/MC.2024.3401542
https://doi.org/10.1109/MC.2024.3401542
https://doi.org/10.1145/2907294.2907316
https://doi.org/10.1145/224170.224229
https://doi.org/10.1137/S1064827595287997
https://arxiv.org/abs/https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1145/3581784.3607104
https://doi.org/10.1145/3154842.3154843
https://doi.org/10.17226/26532
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/TSUSC.2023.3263172
https://doi.org/10.1109/IPDPSW59300.2023.00106
https://doi.org/10.1109/IPDPSW59300.2023.00106

	Abstract
	1 Introduction
	2 Overview
	2.1 Characterizing critical data flows
	2.2 Guidance from critical flows and their interactions
	2.3 Scheduling and tradeoff analysis
	2.4 Modeling flows

	3 Caterpillar Partitioning
	4 Scheduling and Resource Assignment
	5 Flow Tradeoff Analysis
	6 Evaluation
	6.1 Baseline methodology
	6.2 Case study: Montage
	6.3 Case study: 1000 Genomes
	6.4 Case study: DeepDriveMD
	6.5 Case study: SRA Search

	7 Related work
	8 Conclusions
	Acknowledgments
	References

