LiteForm: Lightweight and Automatic Format Composition for
Sparse Matrix-Matrix Multiplication on GPUs

Zhen Peng
zhen.peng@pnnl.gov
Pacific Northwest National Laboratory
Richland, WA, USA

Jacques Pienaar”
jpienaar@google.com
Google
Mountain View, CA, USA

ABSTRACT

Graphics Processing Units (GPUs) have excelled in parallelism and
high throughput for dense, regular computations in modern comput-
ing. However, sparse computations, such as sparse matrix-matrix
multiplication (SpMM), are essential for large-scale, data-intensive
applications, where much of the data is inherently sparse. The
challenge lies in the sparsity and irregularity of sparse matrices or
tensors, which makes achieving high performance on GPU archi-
tectures difficult. Consequently, the utilization of suitable sparse
data formats is imperative for achieving computational efficiency.
Traditional computational libraries often require input in specific
formats, which may not accommodate the diversity of matrix char-
acteristics or the varying sparse patterns within a single matrix.
While some frameworks support composable formats, they often
lack guidance on how to compose these formats effectively or re-
quire costly auto-tuning for optimal performance. In this paper, we
introduce LiteForm, a novel, lightweight framework designed to
automatically compose sparse formats for SpMM computation. We
start by presenting CELL, a composable format featuring a three-
level blockwise representation that optimizes sparse data for GPUs.
LiteForm uses this format and composes it based on the input’s
characteristics. First, it employs a lightweight model trained to
predict whether the CELL format will yield good performance for
a given sparse input matrix. Then LiteForm uses a low-overhead
predictor and an SpMM cost model to automatically configure the
format according to the characteristics of the input matrix. Our
experimental evaluation indicates that LiteForm achieves a geomet-
ric mean speedup of 2.06X, 1.81X, 1.77X, and 4.18X in comparison
to cuSPARSE, Sputnik, dgSPARSE, and TACO, respectively, and
demonstrates speedups of 1.26X and 1.52X over state-of-the-art
SparseTIR and STile, respectively.

“This research was conducted when the author was a visiting researcher at PNNL.
T This research was conducted when the author was a full-time employee at PNNL.

Please use nonacm option or ACM Engage class to enable CC licensesm

This work is licensed under a Creative Commons Attribution 4.0 International License.
HPDC °25, July 20-23, 2025, Notre Dame, IN, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1869-4/2025/07

https://doi.org/10.1145/3731545.3731574

Polykarpos Thomadakis
polykarpos.thomadakis@pnnl.gov
Pacific Northwest National Laboratory
Richland, WA, USA

Gokcen Kestor '
gokcen.kestor@bsc.es
Barcelona Supercomputing Center
Barcelona, Spain

CCS CONCEPTS

« Computing methodologies — Parallel algorithms; Graphics
processors; « Applied computing — Mathematics and statistics;
« Software and its engineering — Compilers.

KEYWORDS

sparse matrix format, format composition, composable format,
SpMM, GPU, machine learning, cost model

ACM Reference Format:

Zhen Peng, Polykarpos Thomadakis, Jacques Pienaar, and Gokcen Kestor.
2025. LiteForm: Lightweight and Automatic Format Composition for Sparse
Matrix-Matrix Multiplication on GPUs. In The 34th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’25), July
20-23, 2025, Notre Dame, IN, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3731545.3731574

1 INTRODUCTION

Graphics Processing Units (GPUs) have become the cornerstone
of modern high-performance computing, driving advancements
in fields such as deep learning [31], computational physics [7],
and bioinformatics [57]. In today’s landscape of large language
models (LLMs), the number of GPUs an organization possesses
is a key indicator of its ability to compete in model training. The
efficacy of GPUs is fundamentally attributed to their ability to
conduct highly parallel data operations and memory access with
efficiency by executing identical operations across multiple data
points concurrently, thereby rendering them especially suitable for
dense and regular computational tasks.

Conversely, sparse computation emphasizes executing algebraic
processes on sparse matrices or tensors—where the majority of com-
ponents are zeros—by prioritizing the non-zero elements and omit-
ting computations related to zero elements. Among them, sparse
matrix-matrix multiplication (SpMM) computes the product of a
sparse matrix and a dense matrix by storing only the non-zero
elements (as shown in Algorithm 1), thereby avoiding unnecessary
computations. Sparse computation is vital in various domains, in-
cluding machine learning [23], graph analysis [46], and scientific
simulations [59], because of its efficiency in both memory usage
and computational speed. Its importance also extends to data an-
alytics, allowing scalable analysis of extremely large but sparsely
populated datasets, which are common in genomic studies [42],
social network analyses [5], and recommendation systems [17].

https://orcid.org/0000-0003-2431-6037
https://orcid.org/0000-0002-4299-570X
https://orcid.org/0000-0003-0443-7624
https://orcid.org/0000-0002-9105-5634
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3731545.3731574
https://doi.org/10.1145/3731545.3731574

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

Algorithm 1: SpMM Cjj = Ay - By j, A is in CSR format.

Input: row pointers array rowPtr, column indices array
colInd, values array val, number of rows I in A,
number of columns J in B, dense matrix B
Output: dense matrix C
1 Function SpMM(rowPtr, collnd, val, I, J, B):
fori=0toldo
forj=0to] do
for pos = rowPtr[i] to rowPtr[i+1] do
5 L k = colInd[pos];
Clil[j] += val[pos] = B[k][j];

oW N

7 return C;

Sparse computation on GPUs presents significant challenges due
to their architectural design, which is optimized for dense and reg-
ular computations [53]. First, irregular memory access patterns in
sparse operations lead to inefficient use of GPU memory bandwidth
and cache [23], while GPUs are optimized with coalesced memory
access in dense computations. Second, sparsity results in an uneven
distribution of workloads across GPU threads, with certain threads
handling a greater number of non-zero elements. This imbalance
contributes to the overhead of synchronization and the inefficient
use of parallel resources [2]. Third, warp divergence arises from the
conditional nature of sparse computation, causing threads within a
warp to follow different execution paths [66], which reduces the
efficiency of Single Instruction, Multiple Threads (SIMT) operations.

Choosing the right sparse format is crucial for optimal GPU
performance because each format involves trade-offs in terms of
memory usage, computational efficiency, and data access. The ap-
propriate format depends on the matrix’s sparsity pattern and the
specific operations being performed. Each sparse matrix has unique
characteristics, making it challenging to find a single format that
performs well across all matrices. Moreover, a single matrix can
contain different sections with varying non-zero patterns, further
complicating the selection process. The problem of sparse matrix
decomposition has been proven to be NP-hard, highlighting the
complexity of this task [15]. An ill-suited format can lead to sub-
optimal performance, underscoring the importance of selecting a
format that effectively balances these trade-offs.

Existing efforts to address the challenge of suboptimal perfor-
mance in sparse computation have focused on either optimizing
fixed formats or supporting composable formats. Libraries like
NVIDIA cuSPARSE [38]and Triton [51] offer highly optimized,
target-specific sparse kernels. Although these kernels can deliver
high performance, their efficiency varies depending on inputs and
sparse formats, often requiring users to experiment and find the
most suitable format. Recent advances in composable formats, such
as SparseTIR [63] and STile [15], provide frameworks to create cus-
tomized formats for specific matrices. However, these approaches
often lack clear guidance on how to compose optimal formats or
require costly auto-tuning per input, making them increasingly
impractical when the number of inputs increases.

In this paper, we introduce LiteForm, a novel, lightweight frame-
work that automatically composes formats for Sp)MM on GPUs.

Zhen Peng, Polykarpos Thomadakis, Jacques Pienaar, and Gokcen Kestor

First, we design the Composable Ellpack (CELL) format, specifically
tailored for GPU architectures. CELL uses a three-level blockwise
data structure that improves data locality and load balancing. It
divides columns into partitions and enhances the traditional Ell-
pack format by allowing flexible row lengths, grouping rows with
similar lengths into buckets, and clustering non-zero elements into
blocks. Second, LiteForm incorporates a lightweight machine learn-
ing model to predict whether a given sparse matrix should use the
CELL format. This model is trained on basic matrix features like
dimensions, non-zero counts, and density, avoiding the need for
costly preprocessing. Finally, LiteForm uses a low-cost classifier and
an SpMM cost model to configure the CELL format for a given ma-
trix without rerunning the kernel at runtime. In summary, LiteForm
improves data locality and warp efficiency by grouping non-zero
elements in a matrix, and ensures load balancing by keeping the
number of non-zeros consistent across the blocks, dedicating itself
to enhance GPU performance.

The contributions of this work are as follows.

e We propose the Composable Ellpack (CELL) format, which uti-
lizes a three-level blockwise data layout to improve data locality
and load balancing.

e We introduce a lightweight machine learning model trained on
basic matrix characteristics to predict whether a given sparse
matrix should be represented in the CELL format.

o We utilize a low-overhead classifier and an SpMM cost model to
configure the CELL format automatically, eliminating the need
for costly runtime auto-tuning.

LiteForm achieves a geometric mean speedup of 2.06x, 1.81X,
1.77X, and 4.18X compared to cuSPARSE, Sputnik, dgSPARSE, and
TACO, respectively, along with speedups of 1.26X and 1.52X over
state-of-the-art SparseTIR and STile, respectively, while incurring
significantly lower overhead by orders of magnitude.

2 BACKGROUND AND MOTIVATION

This section provides an overview of common sparse formats, prior
research, and their limitations, which serve as the motivation for
this work.

2.1 Sparse Formats

A sparse format determines how the values of a sparse matrix are
stored. The primary goals are to 1) minimize space by storing only
non-zeros (and zero padding when necessary), thereby eliminating
redundant computations involving zeros, and 2) enhance memory
access efficiency by organizing elements in contiguous memory.
Over time, numerous sparse storage formats have been developed,
each offering unique storage patterns and computational properties.

Elementwise Formats. Several elementwise formats have been
proposed throughout the years, including COO [43], CSR [52],
DCSR [6], Ellpack (ELL) [29], HiCOO [33], CSF [47], DIA [24],
etc. Each of these formats offers distinct advantages for different
types of computational tasks. For example, the Coordinate (COO)
format [43] stores non-zero entries by recording their full coordi-
nates, representing the matrix as a list of row and column index
pairs. This leads to redundancy, as the row index is recorded multi-
ple times for entries in the same row. In contrast, the Compressed
Sparse Row (CSR) format [52] reduces this redundancy by using

LiteForm HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA
Table 1: Prior work on Sparse Computation on GPUs.
Type Work Automatic Format Sparsity-Pattern Format Construction
Selection Awareness Overhead

cuSPARSE [38] X X Low

Triton [51] X X Low

Fixed Format TACO [30] X X Low

Sputnik [18] X X Low

dgSPARSE [12] X X Low

Auto-SpMV [4] v X Low

SpTFS [49] v X Low

Automatic Selection IA-SpGEMM [60] v X Low

AlphaSparse [13] v X Low

Seer [50] v X Low

SparseTIR [63] X v High

Composable Format STile [15] v v High

LiteForm (this work) v v Low
o g me Values Column indices However, blockwise formats also present notable challenges.
o a b ofa]b 1]s One key issue is that the padding ratio in blockwise formats can
! c The 2 be high for very sparse matrices. A high padding ratio increases
g z 12 . z nnt Lt both the memory footprint and computational overhead. Another
Caleln i Ix alolnli[i[x| o|1]2]3]5]|6 challenge arises when dealing with extremely dense rows that the
5 5 number of non-zero elements is nearly equal to the total number of
j T : L ; & columns, resembling a dense matrix. Blocks (e.g., in BCSR and ELL)

Sparse Matrix Ellpack Format

Figure 1: An example of the Ellpack format. Non-zero ele-
ments in a row are packed to the left. A long row may result
in a high amount of zero padding.

a array rowPtr to store the starting position of each row. Figure 1
shows an example of Ellpack format that stores values and column
indices in two dense matrices by packing non-zeros to the left.

Blockwise Formats. Blockwise formats divide a matrix into
smaller submatrices or blocks. For example, the Block Compressed
Sparse Row (BCSR or BSR) format [25] is the blockwise version of
CSR. In BCSR, a sparse matrix is divided into equal-sized blocks.
Any block that contains at least one non-zero element is treated as a
non-zero block, and zero padding is added to construct a full block.
Similarly, the Blocked Ellpack (BLOCKED-ELL) format [9] and
Sliced Ellpack (SLICED-ELL) format [35] are blockwise variations
of the ELL format.

In general, utilizing blocks in sparse matrix formats provides
several performance benefits on GPUs. First, values within small
blocks can be loaded into shared memory or registers, facilitating
data reuse and significantly reducing global memory accesses. Sec-
ond, the structured and regular nature of blocks enables aligned
memory accesses, which optimizes memory bandwidth utilization
and minimizes the number of memory transactions. Third, blocks
create opportunities for advanced optimizations, such as loop un-
rolling, which can enhance instruction-level parallelism and boost
overall computational efficiency.

containing these dense rows often have a substantial amount of
padding, causing the memory footprint to grow too large for GPUs
to efficiently manage. For example, in one of our experiments using
BCSR with a block size 8 x 8, we ended up with an increase in the
memory footprint of more than 60x. The padding ratio reached
as high as 99%, meaning that only 1% of the elements in a non-
zero block were actual non-zero values. This padding significantly
restricted the usage of the format to much smaller problem sizes,
limiting the performance benefits of the blockwise approach.

2.2 Prior Work on GPU Sparse Computation

Extensive research has been conducted to address the performance
challenges in sparse computations such as Sp)MM. Table 1 evaluates
the state-of-the-art approaches according to three metrics:

e Automatic Format Selection. This assesses whether the ap-
proach automatically selects the most suitable data representa-
tion from existing fixed formats for the entire input. Although
automatic selection can leverage execution history, a fixed for-
mat lacks the flexibility to accommodate varying sparsity pat-
terns across different sections of the input. As a result, it may
miss opportunities for further optimization.

o Sparsity-Pattern Awareness. In real-world applications, sparse
matrices often exhibit a wide variety of sparsity patterns. Itis cru-
cial to accommodate different matrix types, ranging from highly
irregular matrices to matrices with more predictable sparsity
patterns. Meanwhile, it is also critical to detect unique patterns
in different parts of a matrix. The ability to adapt to various
sparsity patterns ensures consistent and improved performance
across diverse scenarios.

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

e Format Construction Overhead. Once the sparsity pattern of
the input is identified, determining the appropriate composition
configuration to accurately represent these patterns becomes
crucial. This process often requires extensive exploration of
the search space and may involve repeatedly running the com-
putational kernel or other microbenchmarks. These iterations
contribute to the overall format construction overhead.

Fixed Sparse Format. This set of methods focuses on optimiz-
ing kernels using fixed sparse formats. Examples include sparse
computing libraries such as NVIDIA cuSPARSE [38], Triton [51],
Sputnik [18], dgSPARSE [12], Intel MKL [26], and compilers such
as TACO [30]. Although the kernels provided by these libraries are
highly optimized, their efficiency varies depending on the input
and the chosen sparse format. In practice, different formats can
lead to significantly different performance outcomes for a given
matrix. However, because these frameworks rely on a fixed format
to represent an input sparse matrix, they cannot adapt to varying
sparsity patterns across different matrices, limiting their ability to
fully optimize performance.

Automatic Format Selection. The second category of work
leverages machine learning techniques for format selection in sparse
computations (e.g. Seer [50], IA-SpGEMM [60], SpTFS [49], Auto-
SpMV [4], AlphaSparse [13], Morpheus-Oracle [48]). For example,
Auto-SpMV [4] introduces an automated framework for optimiz-
ing Sparse Matrix-Vector Multiplication (SpMV) kernels on GPUs.
The framework leverages machine learning to explore the opti-
mization space to automatically select the best-performing SpMV
kernel for a given sparse matrix. Seer [50] is a predictive runtime
framework for sparse format and kernel selection. It uses machine
learning to predict the optimal kernel during execution based on
features such as input size and structure. Seer dynamically selects
the best-performing kernel from a set of candidates, optimizing
for irregular computational patterns. For SpMV, Seer leveraged the
entire SuiteSparse Matrix Collection to gather kernel runtime data.
These approaches typically select a single format that applies uni-
formly throughout the input matrix, ignoring variations in sparsity
patterns. This lack of flexibility prevents an optimal representa-
tion of regions with different sparsity characteristics. In addition,
they often require large datasets for training to cover a variety of
formats, resulting in significant training overhead.

Composable Sparse Formats. The third category of methods
supports composable formats that partition sparse matrices and
represent each partition using different configurations or formats.
Frameworks in this category include SparseTIR [63], STile [15], and
TileSpMV [36]. Some of these approaches identify sparsity patterns
in the input and adjust their data representation accordingly. How-
ever, they do not automate the format composition process. For
instance, SparseTIR offers a sparse tensor compilation abstraction
that supports composable formats and transformations for deep
learning workloads. SparseTIR depends on an exhaustive search
in the space to identify the optimal configuration of composable
formats, which introduces significant overhead. This requirement
adds complexity and cost to overall performance optimization, par-
ticularly for large and diverse datasets. STile focuses on searching
for hybrid sparse formats tailored to sparse deep learning opera-
tions. It supports selecting from three different formats to represent
various parts of a matrix and employs a cost model to identify

Zhen Peng, Polykarpos Thomadakis, Jacques Pienaar, and Gokcen Kestor

= . |G 7 P A [N =7 O T

[EEEE aam [Ty u [EFEFEY a

LT VL | ML = o [am

Saametl| Model ‘ g Lh| Model » [et =

S ma ; b e Jea s
=

Optimize Partitions Optimize Bucket Widths

Figure 2: A workflow overview of LiteForm: 1) an ML model
assesses CELL performance for a matrix, 2) an ML model
determines the number of partitions, and 3) a cost model
helps search for the bucket widths.

the optimal combination of these formats. The cost model is re-
fined through a microbenchmarking process based on the Roofline
model [58]. However, these methods rely heavily on microbench-
marks and require rerunning the kernel multiple times to fine-tune
the configuration, leading to high overhead and extended tuning
times.

3 OVERVIEW OF LITEFORM

The LiteForm framework is designed to optimize SpMM on GPUs by
automatically composing the Composable Ellpack (CELL) format.
The CELL format is a three-level blockwise structure that organizes
non-zero elements across both the column and row dimensions.
In the column dimension, the matrix is divided into partitions. In
the row dimension, rows with similar lengths in a partition are
grouped into buckets. The same number of elements are further
grouped as blocks, which is regarded as a basic workload unit. By dy-
namically adjusting partitions and bucket widths, the format CELL
improves memory access efficiency and load balancing, particularly
for matrices with varying sparsity patterns.

The core of LiteForm is an automated format composition pro-
cess driven by two machine learning (ML) models and an SpMM
cost model. Figure 2 shows the workflow overview of LiteForm.
First, an ML model predicts whether the CELL format will outper-
form fixed sparse formats for a given sparse matrix. Second, for the
matrix in CELL, another ML model determines the optimal number
of partitions. Third, LiteForm utilizes a cost model along with a
search algorithm to compose the buckets and blocks. The search
algorithm uses the cost model to estimate the computation cost
of the buckets and then explores the search space for the optimal
bucket width. Overall, this process allows LiteForm to adapt the
CELL format to the characteristics of the input matrix, improv-
ing computational performance by minimizing padding, reducing
unnecessary computations, and maximizing GPU utilization.

4 COMPOSABLE ELLPACK (CELL) FORMAT

This section introduces the Composable Ellpack (CELL) format, a
three-level blockwise sparse format based on Ellpack. As shown in
Figure 3, the CELL format first evenly divides the columns of the
sparse matrix into multiple partitions. Within each column partition,
rows are organized into different buckets based on the number
of non-zero elements in each row (i.e., the length of row) [35].
Specifically, bucket i has a bucket width of 2! and groups rows
with lengths [that satisfy 2:~! < [< 2. Each bucket forms a sub-
matrix in the Ellpack format, with rows padded with zeros to match

LiteForm

Sparse Matrix

CELL Format

Bucket i = 0 |Bucketi = 2 |Bucketi =3
Partition 1 Partition 2 Partition 3 0<i<?2 2<1<4 4<1<8
O LT i
Partition 1
IIEZF oo i HHH O
m HH
O
°% o o =
LH_”_H_ 0 O Bucketi =1 Bucketi =3
] 1<l<2 4<1<8
- oo mm Partition 2
o i (VA ¢ E S
o P A
o oo oo o Bucketi =1 Bucketi =2
o 0 o O 1<l<2 2<1<4
jmn] Partition 3 | sl
2k =4 N o
] o

Figure 3: A CELL format example. The matrix is divided
into column partitions. A partition collects the rows within
the same row length (/) range together to form buckets. A
bucket groups the same number of non-zero elements (2%
into blocks. The number 2 is set as one or multiple times of
the maximum bucket width of the partition.

the bucket width. Additionally, for bucket i in a column partition,
every 2~! rows are grouped into a block, and the corresponding
computation is assigned to thread blocks on the GPU. Within a
block, the number of non-zero elements processed is Zk, which can
be set as either one or multiple times of the maximum bucket width.
The computational pattern within a non-zero block is shown in
Algorithm 2. This design enhances data locality and load balancing,
optimizing performance for sparse matrix computations on GPUs.

In the implementation, each element in the CELL format is asso-
ciated with its row index, column index, and value. As shown in
Figure 4, a bucket is represented by three arrays: a row index array
rowlnd, a column index array collnd, and a value array val. For an
element at position [i, j] (where i and j represent its coordinates
in the bucket), the row index from the original matrix is stored in
rowlInd[i], while the column index and value are stored at positions
[i * W + j] in the colInd and val arrays, respectively, where W is
the bucket width. This structure allows extremely long rows to be
split into multiple rows in a bucket when the number of non-zero
elements in the row exceeds the bucket width. In such cases, the
row will appear multiple times in the rowInd array. When different
threads process rows with the same row index, the atomic opera-
tion is added (as shown in line 12). In general, a partition consists
of a list of buckets, and a sparse matrix is represented by a list of
partitions.

The CELL format is designed to enhance computational effi-
ciency on GPUs. First, using column partitions improves granularity
and reduces the padding ratio across the matrix, particularly when
dealing with extremely long rows. Second, row buckets enhance
the regularity of sub-matrices by aligning rows to the same size,
forming blocks that are optimized for GPU processing. Although
SparseTIR [63] introduced the hyb format, which also uses parti-
tions and buckets, it enforces the same set of bucket widths across
all partitions. In contrast, the CELL format allows for different sets

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

: [o]
6
Columns i val colind
01 2 3 45 6 7
o[8 : « TG o] 1
1 5 £ val colind val colind
g; d|e f E
T
¢ 41g|h|ilj k|1l l‘\ 0 ! E
: <o Ml I
val colind val colind! | | 4
6 m n
val colind
7 o

Figure 4: Data structures in the CELL format. A bucket is
represented by a row index array, a column index array, and
a value array. A row index “+” indicates zero padding.

Algorithm 2: SpMM C;j = A;y - By ; within a CELL block.

Input: number of rows in the block numRowsInBlock,
bucket width W, row indices array rowInd, column
indices array collnd, values array val, number of
columns J in B, dense matrix B

Output: corresponding block in dense matrix C

1 Function SpMMINCELLBlock (numRowsInBlock, W,
rowlnd, collnd, val, J, B):

2 for iBlk = 0 to numRowsInBlock do

3 i = rowlnd|iBlk];

4 forj=0toJ do

5 local = 0;

6 for kBlk = 0 to W do

7 k = colInd|iBlk][kBlk];

8 L local +=val[iBlk][kBlk] = B[k][j];
9 if 'needAtomic then

10 ‘ Cli][j] += local;

11 else

12 L atomicAdd(C[i][j], local);

of bucket widths in each partition, offering greater flexibility to ac-
commodate varying sparsity in the input data, which significantly
improves data locality and memory utilization.

5 AUTOMATIC FORMAT COMPOSITION

This section outlines the necessary steps involved in the automatic
composition of the CELL format in LiteForm. First, the process
begins by determining whether the CELL format is more advan-
tageous compared to a fixed blockwise format. Second, once this
assessment is made, the appropriate column partitions are estab-
lished, Third, LiteForm organizes rows into buckets based on the
number of non-zero elements and forms blocks as the processing
unit, which involves selecting the optimal bucket widths for each
partition to ensure efficient handling of the matrix. These steps
allow LiteForm to dynamically adapt to varying sparsity patterns
within input data, thereby optimizing both memory usage and
computational performance.

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

5.1 Assessing the Performance Impact of CELL

The first step in the automatic composition of the CELL format
involves determining whether it offers a significant performance
advantage over fixed formats CSR and BCSR that are representa-
tives of elementwise formats and blockwise formats, respectively.
This decision is driven by a pre-trained machine learning (ML)
model designed to predict whether the CELL format will provide
better computational performance compared to the fixed blockwise
approach.

The ML model is trained using a variety of matrix features and
the history of the execution time of different matrices. The chosen
features are listed in Table 2, which have been used in prior research
to characterize matrices [4, 48, 49, 60]. By analyzing these features,
the ML model can assess whether the flexibility of the CELL format—
with its ability to adjust bucket widths and dynamically partition
the matrix—will lead to improvements in data locality and memory
utilization over the fixed formats.

To gather training data for the ML model, LiteForm executes the
SpMM Kkernel on a carefully selected set of matrices using both the
CELL and the fixed formats. These matrices are chosen from diverse
application domains to cover a broad range of sparsity patterns,
ensuring that the model is trained on a representative sample of
real-world matrices. For each matrix, the execution times for all
formats are recorded. For the CELL format, the kernel is executed
multiple times to identify the configuration that delivers the best
execution performance. Although this tuning process incurs an
initial cost, it is amortized over future uses of the model, ensuring
that the performance gains outweigh the upfront overhead in the
long run. If the CELL format demonstrates a speedup of more than
1.1x compared to both fixed formats, the matrix is labeled “TRUE.
Otherwise, it is labeled “FALSE.” These labels, along with the matrix
characteristics, form the training data set for supervised learning.
This training approach guarantees that the ML model is equipped
to predict, based on the characteristics of the incoming matrices,
whether the CELL format will yield better performance than the
fixed approaches.

Once the model makes a prediction, the composition process
proceeds only if the CELL format is expected to offer a tangible
performance benefit. This ensures that the overhead associated
with configuring the CELL format is justified by the anticipated per-
formance improvements. If the fixed formats is deemed sufficient,
the system avoids unnecessary complexity and computation.

Table 2: Sparse matrix features used to predict whether CELL
offers a performance advantage.

l Feature to Predict Format

number or rows

number of columns

number of non-zero elements

average number of non-zeros per row
minimum number of non-zeros per row
maximum number of non-zeros per row
standard deviation of non-zeros per row

Zhen Peng, Polykarpos Thomadakis, Jacques Pienaar, and Gokcen Kestor

5.2 Optimizing Partitions in CELL Composition

The CELL format, as a three-level blockwise structure, organizes
non-zero elements across both column and row dimensions. In the
column dimension, the matrix is divided into partitions, which is
especially beneficial for matrices with extremely long rows, as these
partitions break the rows into smaller parts, reducing the overall
padding ratio. In the row dimension, rows with similar lengths
are grouped into buckets, and the same number of elements form
blocks, enhancing the regularity within each processing unit. The
performance of the CELL format for any given matrix depends
on the careful selection of partitions and bucket sizes. Therefore,
optimizing these parameters is essential to maximize computational
efficiency and performance.

Once the CELL format is predicted to outperform the fixed for-
mats, the next step to compose the CELL format is to determine
the optimal number of partitions. Since the number of partitions
is an integer, this problem can be framed as a typical classification
task in machine learning. Using a classification model, LiteForm
can predict the appropriate number of partitions based on the input
data. The features used for the prediction include the density of
the sparse matrix and the size of the dense matrix, as outlined in
Table 3. Density is defined as the ratio of non-zero elements to the
total size of a dense matrix. Through testing, we found that using
density values rather than absolute values significantly improves
prediction accuracy. This is because the design of column parti-
tions is closely tied to the matrix’s sparsity pattern and non-zero
distribution, and density provides more direct information about
the input matrix’s sparsity than raw absolute values. Additionally,
the size of the dense matrix is considered a key feature, as it affects
memory layout and, consequently, the kernel’s performance.

To generate training data for the machine learning classifier, we
run the sparse kernel SpMM on a small set of input matrices, as
described in Section 5.1, while varying the size of the dense matrices
to candidates of 32, 64, 128, 256, and 512 to cover a range of possible
scenarios. The training data is collected by recording the execution
time along with the density features of the sparse matrix and the
size of the dense matrix.

To select the best model for predicting the number of partitions,
we evaluated several machine learning classification models. The
evaluation metrics include not only accuracy but also similarity
between predicted and actual values. This is important because

Table 3: Sparse matrix features to predict the optimal number
of partitions in CELL.

l Feature to Predict Number of Partitions ‘

number of rows

number of columns

number of non-zero elements

average density of non-zeros per row
minimum density of non-zeros per row
maximum density of non-zeros per row
standard deviation of non-zero density per row
product of other dimensions in the kernel

LiteForm

partition numbers that are close in value tend to produce simi-
lar performance results. For a given sparse matrix and a specific
dense matrix size, the similarity between the predicted number
of partitions p and the actual value p is measured as the relative
difference:
lp — 1l

max(p.p) -
For a given sparse matrix across multiple dense matrix sizes (e.g., 32,
64, 128, 256, and 512), the similarity between the predicted partition
vector P and the actual partition vector P is measured using cosine
similarity:

1

similarity = 1 -

pP-P
PP
The similarity measurement can be used as a loss function to
evaluate the machine learning classification models in the sense that
similar partition numbers can lead to similar performance. LiteForm
utilizes the pre-trained model to predict the optimal number of
partitions for an unseen sparse matrix.

@

similarity =

5.3 Optimizing Bucket Widths in CELL
Composition

After partitioning the sparse matrix into column partitions, the next
step in constructing the CELL format is to build the corresponding
buckets and blocks. Each column partition generates its own set
of buckets based on the distribution of row lengths within that
partition. According to the CELL design, the bucket i is assigned a
bucket width of 2!, and rows with lengths I (the number of non-zero
elements in the row) that satisfy 2/=! < | < 27 are placed in this
bucket. Furthermore, every 2k=1 rows in the bucket i are grouped
into a block, which is mapped to a thread block on the GPU. Each
block contains 2X non-zero elements, where 2k is setas a multiple
of the maximum bucket width.

The initial buckets in a partition are constructed based on the
lengths of all rows within that partition. However, this initial con-
figuration may be suboptimal due to the presence of extremely long
rows. The bucket containing these long rows will be assigned the
maximum bucket width, and when rows are grouped into blocks,
the block size is determined by this maximum width. If the max-
imum bucket width is excessively large, many blocks will lack
sufficient non-zero elements, leading to load imbalance when these
blocks are mapped to GPU thread blocks.

To mitigate the impact of long rows, the CELL format allows
a single row to be represented as multiple rows within a bucket,
all sharing the same row index. Specifically, the row index array
rowlInd stores the index of each row in the bucket. When a very
long row is split into multiple rows within the bucket, these are
referred to as folded rows, and they are assigned the same row index
in the corresponding locations of the rowInd array.

For partitions containing long rows, the maximum bucket width
can be set to be smaller than the length of the longest row (still
constrained to powers of 2), allowing these long rows to be placed
in relatively smaller buckets, as shown in Figure 5. To optimize this
process, we propose a cost model to estimate the computation cost
of a given bucket, along with a search algorithm that explores the
space for the optimal bucket width based on the cost model.

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

51
s EEE, -

Sparse Matrix

Figure 5: An illustration of how the maximum bucket width
influences the distribution of non-zero elements. A larger
maximum bucket width could have fewer row index accesses
and coarser-grained computation workloads, while a smaller
one could have less zero padding.

Cost Model. The proposed cost model estimates the computa-
tion cost of a given bucket by considering the volume of global
memory loading and storing, as memory access overhead generally
dominates overall GPU computation. The configuration of bucket
widths plays a critical role in determining how rows are distributed
among buckets, which directly affects the number of memory ac-
cesses required.

Consider the Sparse Matrix-Matrix Multiplication (SpMM) opera-
tion that is expressed as Cj; = A - By ; where A;y. is a sparse matrix
and Cjj, By j are dense matrices. The computation is formulated as:

Cli,jl =)" Ali,k] - Blk,j] 3)
k

where 0 < i < 1,0 < j < J,0 <k < Kwith I, J, and K denoting
the dimensions of the matrices. When using the CELL format, each
element A[i, k] in the matrix A is represented not only by its value
but also by its corresponding column index Ind[i, w], where w
refers to the position of the index k within the structure, rather
than its actual column index. Consequently, the SpMM operation
is reformulated as:

Cli, jl =)" Ali,k] - BlInd[i, w], j]. @
k

Based on the definition of the computation, the cost model for
the SpMM task, in terms of a single bucket x, can be defined as the
total cost of performing the matrix multiplication for all non-zero
elements within the bucket.

cost(x) =cost(!) (x) + cost® (x)+ cost® (x) (5)
=2- IOW + [set(Ind[i, w])|J + Atomic - I® J. ()

Here, I (&) represents the number of rows in matrix A within this
bucket when using the CELL format, and I (2) denotes the number
of rows in matrix C that are computed by this bucket. The first
part, costV) (x), represents the cost of accessing the column indices
and values of the non-zero elements in matrix A. It is important to
note that IV and I?) are not necessarily equal, since rows with
a high number of non-zero elements may be split into multiple
rows within the bucket (referred to as folded rows), with the same
corresponding row indices pointing to the output matrix C. Here,
W denotes the bucket width. The second part, cost?) (x), which
is equal to set(Ind[i, w]), represents the set of unique column in-
dices of non-zero elements in this bucket. Thus, it reflects the cost
of accessing the matrix B when performing SpMM for the given

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

Algorithm 3: Build buckets for a given partition.

Input: A column partition P of the matrix
Output: Buckets of the partition P
1 Function BuildBuckets(P):
2 buckets = initialize buckets according to row lengths in
P;
3 rW = max width in buckets ; // the right boundary

4 IwW=1; // the left boundary
5 while [W < rW do

6 mW = (IW +rW)/2; // the middle
7 mBuckets = TuneWidth(buckets, mW);

8 mCost = GetAllCost(mBuckets);

9 mBuckets2 = TuneWidth(buckets, 2 X mW);

10 mCost2 = GetAllCost(mBuckets2);

1 if mCost > mCost2 then

/* If the mW’s cost is greater than
the next setting 2xmW’s cost, the
better setting is to the right */

12 W =2 x mW,
13 else
/* The better setting is to the left or
at rw */
14 rW = mW,;

15 fBuckets = TuneWidth(buckets, IW);
16 | return fBuckets;

bucket. The third part, cost® (x), represents the cost of writing the
computed results to the output matrix C. The Atomic represents
the weight of the atomic operation, which becomes necessary when
multiple GPU threads attempt to update the same memory address
simultaneously. This atomic operation ensures the correctness by
serializing access to prevent data corruption.

Atomic operations (shown as line 12 in Algorithm 2) are required
when there is more than one column partition in the matrix A or
when the bucket is the last (maximum) bucket within its partition
(shown as the condition in line 9). In cases where multiple partitions
exist, non-zero elements from the same row in A may be processed
by different GPU threads. Similarly, the last bucket might contain
folded rows that are handled by different threads but correspond
to the same rows in the output matrix C. In both scenarios, atomic
operations ensure the correctness of computation by serializing
access to shared memory. However, these operations introduce
additional memory access overhead due to the additional memory
transactions required [37]. To account for this overhead, we define

P (O]
Atomic = @
cesses compared to a single normal write operation. This results in

the following cost model:
cost(x) =2 - IVW + |set(Ind[i, w])|J + IV J. (7)

Search for Optimal Bucket Width. Based on the cost model
and the design of the CELL format, the bucket width can be adjusted
by either double or half. When the width is doubled, the number
of rows in the bucket I(1) decreases, causing cost® to increase

representing the average number of memory ac-

Zhen Peng, Polykarpos Thomadakis, Jacques Pienaar, and Gokcen Kestor

while cost(®) decreases. In contrast, when the width is halved, these
factors respond in the opposite direction. There is supposed to exist
an optimal bucket width that is the trade-off between cost?) and
cost®), where any width smaller than or larger than this will lead
to higher overall costs.

For the optimal bucket width for a partition, we propose the
Algorithm 3, which leverages the trend of the cost relevant to the
bucket width. Initially, the buckets are constructed by dividing
the rows according to their length, where the rows with length [
satisfying 271 < I < 2! are placed in a bucket with width 2/ (line 2).
The possible maximum bucket width is set as the current maximum
width of the initial buckets (line 3), and the lower boundary is set
to 1 (line 4). The algorithm then functions like a binary search,
calculating the middle width and its associated cost, and updating
the lower or upper boundary accordingly (line 6-14). The function
TuneWidth() adjusts the maximum width of the current buckets;
GetAllCost() returns the total cost of all current buckets. If the
cost of the middle width mW is higher than the cost of 2 x mW
(line 11), the optimal width should be to the right, otherwise to the
left or at mW. In the end, IW points to the optimal width, and the
algorithm returns the buckets built with this width (line 16).

6 IMPLEMENTATION

We built LiteForm on the SparseTIR framework [63] and use TVM [8]
to generate kernel code. In the CELL format, the blocks in a bucket
are mapped to GPU thread blocks by TVM’s split and bind prim-
itives. SparseTIR would emits multiple CUDA kernels and insert
a horizontal fusion [16, 32] pass to the TVM backend to reduce
extra kernel-launching overhead on the GPU. The powerful ab-
stractions and tools of TVM facilitate the implementation of new
kernels in LiteForm. Additionally, we leveraged scikit-learn [41] to
construct the machine learning models. After evaluating various
models (details in Section 7), LiteForm adopted Random Forrest
model to assess the performance and optimize partitions for CELL
format.

7 EVALUATION

This section provides a comprehensive performance evaluation of
LiteForm. First, we evaluate the performance benefits of the auto-
matically constructed CELL format in comparison to alternative
methods for SpMM. Next, we analyze the overhead associated with
the automatic format construction process. Finally, we present the
results of the evaluation and selection of the most effective machine
learning models to predict both the performance improvements of
the CELL format and the optimal configuration parameters, includ-
ing the number of partitions and bucket widths.

Our experiments were conducted on a system equipped with
Intel Xeon E5-2698 20-core processors, an NVIDIA V100-SXM2-
16GB GPU, 500 GB of RAM, running Ubuntu 22.04.4, and CUDA
12.2. We compared our method with several baseline approaches,
including:

o cuSPARSE [38]: An NVIDIA standard library that provides high-
performance implementations of common sparse operations for
basic linear algebra subroutines.

LiteForm

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

citeseer

cora pubmed ppi arxiv

Figure 6: Normalized speedup relative to cuSPARSE for SpMM.

w
g 16.00 Triton dgSPARSE SparseTIR
& ® < WEE Sputnik WEE TACO mm STile
S5 . m'
o 4.00 od et ©)
- ' 8 e
s o =
S 1.00
2
1%}
2
N 0.25
©
£
2
0.06

Il LiteForm(ours)

proteins

Triton [51]: A language and compiler for writing highly efficient

custom deep learning primitives using a tiling-based intermedi-

ate representation (IR). We utilized its block sparse implementa-

tion.

o Sputnik [18]: A library of sparse linear algebra kernels and utili-
ties designed for deep learning applications.

e dgSPARSE [12]: A high-performance library optimized for accel-
erating sparse kernels on GPUs, tailored for machine learning
applications such as GNNs.

e TACO (Tensor Algebra Compiler) [30]: A compiler that generates
efficient code for computations involving both sparse and dense
linear and tensor algebra.

o SparseTIR [63] and STile [15]: State-of-the-art frameworks that
support composable formats for sparse computation.

The input sparse matrices used in our experiments are detailed
in Table 4. The first seven matrices are widely used for testing
operations in graph neural networks (GNNs). The remaining 1,351
matrices, are drawn from the SuiteSparse Matrix Collection [11] that
has at least 2,000 nodes and are selected to cover a broad spectrum
of sparsity patterns and application scenarios. This diverse selection
ensures that our approach is thoroughly tested across various real-
world conditions.

7.1 Performance Evaluation

We evaluated the performance of our framework in comparison
to alternative methods on SpMM, using representative sparse in-
puts from the sparse deep learning domain. The performance is

Table 4: Sparse matrices information

Graph #nodes #edges Density
cora [45] 2,708 10,556 1.44E-03
citeseer [45] 3,327 9,228 8.34E-04
pubmed [45] 19,717 88,651 2.28E-04
ppi [20] 44,906 1,271,274 6.30E-04
arxiv [22] 169,343 1,166,243 4.07E-05
proteins [22] 132,534 39,561,252 2.25E-03
reddit [20] 232,965 114,615,892 2.11E-03

SuiteSparse [11] 2.0K-3.8M 3.1K-300.9M 8.7E-07-0.1

measured as the execution time of the kernel, not including the
overhead of format construction that will be evaluated in the fol-
lowing subsections. Figure 6 displays the normalized speedup rela-
tive to cuSPARSE. Each bar represents the geometric mean of the
speedup achieved for SpMM, with the number of columns in the
input dense matrix varying over 32, 64, 128, 256, and 512. The label
OOM indicates the cases in which the experiment encountered an
out-of-memory error. LiteForm achieved speedups ranging from
1.22X to 3.73x over cuSPARSE, with a geometric mean speedup of
2.06X. The most closely related works to ours are SparseTIR and
STile, which report geometric mean speedups of 1.63x and 1.36X,
respectively, over cuSPARSE. In comparison, LiteForm obtained
1.26X and 1.52X geometric mean speedup over SparseTIR and STile,
respectively. In addition, Triton, Sputnik, dgSPARSE, and TACO
show 0.11%, 1.14X, 1.16X, and 0.49x geometric mean speedups
over cuSPARSE, respectively. Meanwhile, LiteForm demonstrated
18.72%,1.81X%, 1.77%, and 4.18X geometric mean speedup in compar-
iton to Triton, Sputnik, dgSPARSE, and TACO, respectively. Here
Triton uses the BSR format, while cuSPARSE, Sputnik, dgSPARSE,
and TACO use CSR format. For setting its scheduling, TACO took
the combination of six different numbers of non-zeros per warp
and six different numbers of warps per thread block, i.e. 36 different
schedules in total, to run the kernel and used the shortest time as
its final performance.

The key reason why LiteForm significantly outperforms Sparse-
TIR and STile is its ability to accommodate varying sparsity in input
data, which has a substantial impact on GPU performance. Lite-
Form improves data locality and memory utilization by dynamically
adjusting bucket sizes based on the density of different sections of
the matrix, assigning different sizes of the buckets to each partition.
This approach reduces the amount of zero padding, minimizing
both memory waste and computational overhead. Consequently,
fewer unnecessary computations are performed on padded zeros,
leading to a significant improvement in overall efficiency.

We evaluated LiteForm’s performance against SparseTIR using
1,351 matrices with at least 2,000 nodes and varying sparsity pat-
terns from the SuiteSparse matrix collection [11]. Figure 7 illustrates
the normalized speedup of LiteForm relative to SparseTIR in which
SparseTIR employed an extensive auto-tuning technique to deter-
mine the optimal configuration for its composable format. Across
these matrices, LiteForm achieved a geometric mean performance

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

«
ESIOO SparseTIR

LiteForm

54.00
1%}
£2.00
£1.00
g
£0.50
3
80.25
£
50.12

104 10° 10°
Number of rows of matrices

Figure 7: Normalized speedup of LiteForm relative to optimal-
tuned SparseTIR using 1,351 matrices with at least 2,000
nodes and varying sparsity patterns from the SuiteSparse
matrix collection.

of 0.99x that of optimal-tuned SparseTIR, with speedups ranging
from 0.19% to 5.21%. The CELL format is designed to handle di-
verse sparsity patterns across different sections of a matrix, making
it particularly useful in domains like machine learning, scientific
simulations, and graph processing. However, it may not always
be advantageous to use CELL in cases where the input matrix ex-
hibits a uniform or highly regular sparsity pattern, such as densely
structured blocks.

7.2 Format Construction Overhead

For sparse inputs in the sparse deep learning domain, we evaluated
the overhead of sparse format construction for SparseTIR, STile,
and LiteForm. The results are shown in Figure 8. Overall, the over-
head introduced by LiteForm is an order of magnitude lower than
the other two methods, with SparseTIR and STile experiencing
geometric mean overhead 65.5X and 42.3X, respectively. SparseTIR
requires an extensive auto-tuning process to find the optimal for-
mat composition, while the overhead in STile stems from executing
microbenchmarks to search for the best format composition for
each matrix. In contrast, LiteForm’s overhead primarily comes from
three sources: 1) the inference cost of the ML model to determine
if the CELL format outperforms a fixed blockwise format, 2) the
inference cost for predicting the optimal number of partitions, and
3) the search cost for determining the optimal bucket width. We

Table 5: Overhead and accuracy of the tested ML models for
predicting performance improvement of CELL format.

name training(s) inference(s) accuracy precision recall f1
Random Forest 0.2859 0.0079 88.92% 88.92% 88.92% 88.92%
KNeighbors 0.0024 0.0127 79.31% 7931% 79.31% 79.31%
Linear SVM 0.0849 0.0098 67.00% 67.00% 67.00% 67.00%
RBF SVM 0.0856 0.0199 73.40% 73.40% 73.40% 73.40%
Gaussian Process 346.2509 0.0697 84.24% 84.24% 84.24% 84.24%
Decision Tree 0.0292 0.0004 85.96% 85.96% 85.96% 85.96%
Neural Net 2.8343 0.0016 66.50% 66.50% 66.50% 66.50%
AdaBoost 0.1828 0.0079 86.45% 86.45% 86.45% 86.45%
Naive Bayes 0.0018 0.0004 63.30% 63.30% 63.30% 63.30%

QDA 0.0022 0.0004 66.75% 66.75% 66.75% 66.75%

Zhen Peng, Polykarpos Thomadakis, Jacques Pienaar, and Gokcen Kestor

10°
SparseTIR - N
104 WM STile § = 2
BN LiteForm S =2 -

104.30

Overhead (s)
=
2

=
o
o

~
m
)
d E
cora citeseerpubmed ppi arxiv proteins reddit

Figure 8: Overhead comparison: SparseTIR’s auto-tuning pro-
cess, STile’s format searching mechanism, and LiteForm’s
format construction process.

10°

SparseTIR .

: (] " .
@ 103 L|teF9rm R) \“" 3’
m p '? : .o‘ °
g 10! . L S S PR L
()
>
@)

i

i 9 @ @ 8
10% 10° 10°
Number of rows of matrices

Figure 9: Overhead comparison: SparseTIR’s auto-tuning pro-
cess and LiteForm’s format construction process.

argue that the time spent generating training data and training ML
models can be amortized over future executions.

Figure 9 shows the overhead comparison using SuiteSparse ma-
trices between SparseTIR and LiteForm. In most cases, SparseTIR’s
auto-tuning overhead is orders of magnitude larger than LiteForm’s
inference and searching overhead. Overall, the geometric mean ra-
tio of SparseTIR’s overhead to LiteForm’s is 1150.2X.

Table 6: Overhead and accuracy of the tested ML models for
predicting the optimal number of partitions in the CELL
format. cos_sim stands for cosine similarity.

name training(s) inference(s) accuracy precision recall fl cos_sim
Random Forest ~ 0.4778 0.0127 87.30% 87.30% 87.30% 87.30% 0.77
KNeighbors 0.0046 0.0321 82.98% 82.98% 82.98% 82.98% 0.23
Linear SVM 0.2273 0.0244 82.45% 82.45% 82.45% 82.45% 0.25
RBF SVM 0.5688 0.0692 82.56% 82.56% 82.56% 82.56% 0.25
Gaussian Process 1481.1395 24.0115 82.56% 82.56% 82.56% 82.56% 0.25
Decision Tree 0.0200 0.0005 85.40% 85.40% 85.40% 85.40% 0.77
Neural Net 3.0432 0.0017 82.45% 82.45% 82.45% 82.45% 0.25
AdaBoost 0.1952 0.0106 82.13% 82.13% 82.13% 82.13% 0.25
Naive Bayes 0.0025 0.0008 56.41% 56.41% 56.41% 56.41% 0.29
QDA 0.0036 0.0011 0.21% 0.21% 0.21% 0.21% 0.25

LiteForm
1.0
> —— Format Selection
§ —— Number of Partitions
30.9
(@]
(o]
c
i)
Go.8
o)
g
[
0.7 1000 2000 3000 4000

Training data size (rows)

Figure 10: Impact of training set size on prediction accuracy
for CELL format selection and optimal partitions.

7.3 Prediction Performance

To identify the most suitable machine learning models to assess the
performance benefit of the CELL format and predict the optimal
number of partitions, we experimented with 10 commonly used
classification models [44]. Table 5 lists the classifiers tested and
presents their performance in terms of both overhead and accuracy
when predicting whether the CELL format provides a performance
improvement for a given input. To test these models, we used 80%
of 514 matrices from the SuiteSparse collection as the training set
and the remaining 20% as the test set. Among the classifiers tested,
Random Forest achieved the best accuracy of 88.92% with a train-
ing time of only 0.28 seconds. Consequently, we selected Random
Forest as the format selection model due to its ability to provide
the highest prediction accuracy while maintaining relatively low
training overhead.

We also evaluated the same models to predict the optimal num-
ber of partitions in the CELL format. Table 6 presents the overhead
and accuracy of these models. During model evaluation, we con-
sidered not only accuracy but also similarity metrics to select the
most suitable model for our objective. Using a metric like cosine
similarity proved particularly advantageous in predicting the opti-
mal number of partitions. Although exact predictions are preferred,
it is equally important that incorrect predictions remain close to
the groundtruth. By applying cosine similarity, the model priori-
tized predictions near the correct value, ensuring that even slight
deviations resulted in minimal performance loss. Based on these
criteria, we selected the Random Forest model for use in LiteForm,
as it achieved a high accuracy of 87.30% with a training time of
0.4748 seconds and demonstrated a strong cosine similarity to the
groundtruth.

To demonstrate the relationship between prediction accuracy
and the training set size, we evaluated the final selected ML models
using progressively larger datasets. As shown in Figure 10, the
Random Forest model achieved accuracy over 80% even with just a
few hundred data points. As the size of the training data increased,
the model’s accuracy approached 90%, highlighting the significant
impact of larger training sets on improving the model’s accuracy.

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

=
o

o
©

Cost value
—— GPU compute throughput (%)
—— Execution time (ms)
06 zb 2b 2/ 28 29
Maximum bucket width

Normalized value
o o
~ 0]

Figure 11: The reflection from the cost model value to the
GPU compute throughput and execution time. The bucket
width incluences the cost value. When cost value is the lowest,
the GPU compute throughtput reaches the highest and the
execution time is the shortest. All value are normalized to
put on the same y-axis scale.

7.4 Cost Model Performance

To evaluate the effectiveness of the cost model in predicting kernel
performance, we tested the reddit data set with various bucket con-
figurations. Figure 11 illustrates how the maximum bucket width
impacts the cost model value, GPU compute throughput [39], and
execution time, with all values normalized for comparison on the
same y axis. The results show that when the maximum bucket width
is set to 28, the cost value is minimized, GPU throughput reaches
its peak, and execution time is shortest. This alignment between
the cost model and the actual performance confirms that the cost
model accurately reflects the kernel’s efficiency. Consequently, in
Algorithm 3, the bucket configuration that produces the lowest cost
would deliver optimal performance.

8 LIMITATIONS

LiteForm is designed to provide lightweight, automatic selection
and composition of sparse formats with minimal overhead. Cur-
rently, the framework has some limitations. First, LiteForm needs
historical performance data to configure the CELL format optimally,
which may cost hours, and it requires model retraining for new
architectures or kernels. Using transfer learning [56] in the future
may reduce the necessity of retraining from scratch. Second, Lite-
Form’s performance depends on historical data, which may not
cover scenarios like a large number of partitions or extremely wide
buckets. Expanding the data set or using generalized prediction
techniques could address this problem. Lastly, LiteForm currently
does not utilize Tensor Cores on GPUs to further boost performance.
Incorporating Tensor Cores support in the future could unlock ad-
ditional performance improvements, particularly in deep learning
workloads.

9 RELATED WORKS

In addition to the ones mentioned in Section 2.2, there are other
works on optimizing SpMM and other sparse computations on
GPUs, which utilize various optimization techniques.

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

ML-guided Prediction. There are some works that also use
ML models to guide the optimization of sparse computations. DA-
SpMM [10] uses the gradient boosting framework LightGBM [28] to
select the best loop designs for Sp)MM. DDB [65] uses an ML model
to find optimal SpMM strategies not on GPUs but on hardware with
dedicated matrix-multiply units. WISE [64] is an ML framework
that predicts the performance of different sparse matrix-vector
multiplication (SpMV) methods.

Blocking and Tiling. Blocking and tiling partition the com-
putation and memory access of non-zero elements for better data
reuse and load balancing. 1D-VBR [1] uses dynamic row groups
in a fixed column grouping (with single columns) to partition the
matrix into blocks of one column. It then uses a micro-benchmark
to configure the block size. AspT [21] divides a sparse matrix in
the CSR format into row panels. Within each row panel, column
segments are classified as sufficiently dense or not according to
a threshold determined by micro-benchmarking using synthetic
matrices. SparseRT [55] aims to accelerate deep learning inference
on GPUs. For SpMM, it first treats a sparse matrix as a dense matrix
and then explores different tiling strategies. For each of those tiling
strategies, SparseRT rebalances and removes computations that
involve zeros in the original sparse matrix to obtain an optimized
executor code. Yang et al. [62] propose hybrid blocking strategies
for SpMV to adapt to various data localities. Anzt et al. [3] uses a
modified sliced Ellpack format which blocks a set of vectors and
processes them simultaneously. Yang et al. [61] extend two tiling
strategies (row-splitting and merge-based) in SpMV for the SpMM.

Workload Balancing. Merrill and Garland [34] adapt the fine-
grained MergePath decomposition [40] to merge two sorted lists,
allowing them to distribute balanced workloads among the process-
ing elements for SpMV. HP-SpMM [14] ensures that the non-zero
elements for each warp belong to the same row as much as possible
while achieving load balancing to reduce global memory accesses
for GNN training. GNNAdvisor [54] proposes partitioning and
thread alignment methods for workload management to reduce
inter-node workload imbalance and redundant atomic operations.
Anzt et al. [2] compare four sparse representation formats with
different work balancing strategies for SpMV. In addition, there are
other optimization techniques including reordering [27], thread
coarsening [23], and vectorization [19].

10 CONCLUSION

This paper presents LiteForm, a lightweight framework for auto-
matic composition of the CELL format, a flexible three-level block-
wise structure to optimize SpMM on GPUs. The CELL format orga-
nizes non-zero elements into column partitions, row buckets, and
non-zero blocks, adapting to matrix sparsity patterns to enhance
memory efficiency and load balancing. The automatic composition
of the CELL format is driven by machine learning models and a cost
model. Pretrained ML models determine optimal partitions based on
matrix density and size, while the cost model adjusts bucket widths
by analyzing memory access and overhead, ensuring efficient block
distribution across GPU threads. By merging predictive and cost-
driven strategies, LiteForm automates the configuration of the CELL
format, improving performance across diverse matrix structures

Zhen Peng, Polykarpos Thomadakis, Jacques Pienaar, and Gokcen Kestor

and minimizing manual tuning. Thus, LiteForm is an effective solu-
tion for optimizing sparse matrix operations in various workloads.
Our SpMM experiments show that LiteForm achieves a geometric
mean speedup of 2.06%, 1.81%, 1.77X, and 4.18X over cuSPARSE,
Sputnik, dgSPARSE, and TACO, respectively, and speedups of 1.26x
and 1.52X compared to state-of-the-art SparseTIR and STile, respec-
tively. In the future work, we plan to extend LiteForm’s design to
various sparse computational kernels and even for multiple GPUs.

ACKNOWLEDGMENTS

The authors thank anonymous reviewers for their constructive
comments and informative suggestions. This work is supported by
the U.S. Department of Energy (DOE), Office of Science, Advanced
Scientific Computing Research (ASCR) program under the project
“81461 - Compiler Frameworks and Hardware Generators” at Pacific
Northwest National Laboratory (PNNL). PNNL is a multi-program
national laboratory operated for the U.S. Department of Energy
(DOE) by Battelle Memorial Institute under Contract No. DE-AC05-
76RL01830.

REFERENCES

[1] Willow Ahrens and Erik G Boman. 2020. On Optimal Partitioning For Sparse
Matrices In Variable Block Row Format. arXiv preprint arXiv:2005.12414 (2020).

[2] Hartwig Anzt, Terry Cojean, Chen Yen-Chen, Jack Dongarra, Goran Flegar, Pratik
Nayak, Stanimire Tomov, Yuhsiang M Tsai, and Weichung Wang. 2020. Load-
Balancing Sparse Matrix Vector Product Kernels on GPUs. ACM Transactions on
Parallel Computing (TOPC) 7, 1 (2020), 1-26.

[3] Hartwig Anzt, Stanimire Tomov, and Jack J Dongarra. 2015. Accelerating the

LOBPCG Method on GPUs Using a Blocked Sparse Matrix Vector Product. In
SpringSim (HPS). 75-82.

[4] Mina Ashoury, Mohammad Loni, Farshad Khunjush, and Masoud Danesh-

talab. 2023. Auto-SpMV: Automated Optimizing SpMV Kernels on GPU.

arXiv:2302.05662 [cs.DC]

Per Block, Marion Hoffman, Isabel J Raabe, Jennifer Beam Dowd, Charles Rahal,

Ridhi Kashyap, and Melinda C Mills. 2020. Social Network-Based Distancing

Strategies to Flatten the COVID-19 Curve in a Post-Lockdown World. Nature

human behaviour 4, 6 (2020), 588-596.

Aydin Buluc and John R Gilbert. 2008. On the Representation and Multiplication

of Hypersparse Matrices. In 2008 IEEE International Symposium on Parallel and

Distributed Processing. IEEE, 1-11.

[7] Stefano Carrazza, Juan Cruz-Martinez, Marco Rossi, and Marco Zaro. 2021. Mad-
Flow: Automating Monte Carlo Simulation on GPU for Particle Physics Processes.
The European Physical Journal C 81 (2021), 1-7.

[8] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An Automated {End-to-End} Optimizing Compiler for Deep Learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
578-594.

[9] Jee W. Choi, Amik Singh, and Richard W. Vuduc. 2010. Model-Driven Autotun-

ing of Sparse Matrix-Vector Multiply on GPUs. In Proceedings of the 15th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP

2010) (Bangalore, India) (PPoPP °10). Association for Computing Machinery, New

York, NY, USA, 115-126. https://doi.org/10.1145/1693453.1693471

Guohao Dai, Guyue Huang, Shang Yang, Zhongming Yu, Hengrui Zhang, Yufei

Ding, Yuan Xie, Huazhong Yang, and Yu Wang. 2022. Heuristic Adaptability to

Input Dynamics for Spmm on GPUs. In Proceedings of the 59th ACM/IEEE Design

Automation Conference (DAC). 595-600.

[11] Timothy A Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix

Collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),

1-25.

dgSPARSE. 2024. dgSPARSE. https://dgsparse.github.io/. Accessed: September

12, 2024.

Zhen Du, Jiajia Li, Yinshan Wang, Xueqi Li, Guangming Tan, and Ninghui Sun.

2022. AlphaSparse: Generating High Performance Spmv Codes Directly From

Sparse Matrices. In SC22: International Conference for High Performance Comput-

ing, Networking, Storage and Analysis. IEEE, 1-15.

[14] Ruibo Fan, Wei Wang, and Xiaowen Chu. 2023. Fast Sparse Gpu Kernels for

Accelerated Training of Graph Neural Networks. In 2023 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 501-511.

[5

l6

[10

=
&N

(13

https://arxiv.org/abs/2302.05662
https://doi.org/10.1145/1693453.1693471
https://dgsparse.github.io/

LiteForm

[15]

[16]

[17]

(18]

[19]

[20

[21]

[22]

[23]

[24]

[25]

[28]

[29]

[30

[31]

[32]

[33]

[34]

[35]

[36

Jingzhi Fang, Yanyan Shen, Yue Wang, and Lei Chen. 2024. STile: Searching
Hybrid Sparse Formats for Sparse Deep Learning Operators Automatically. Pro-
ceedings of the ACM on Management of Data 2, 1, Article 68 (mar 2024), 26 pages.
https://doi.org/10.1145/3639323

Pratik Fegade, Tiangi Chen, Phillip Gibbons, and Todd Mowry. 2022. The CoRa
Tensor Compiler: Compilation for Ragged Tensors With Minimal Padding. Pro-
ceedings of Machine Learning and Systems 4 (2022), 721-747.

Chenjiao Feng, Jiye Liang, Peng Song, and Zhigiang Wang. 2020. A Fusion Collab-
orative Filtering Method for Sparse Data in Recommender Systems. Information
Sciences 521 (2020), 365-379.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse Gpu
Kernels for Deep Learning. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 1-14.

Joseph L Greathouse and Mayank Daga. 2014. Efficient Sparse Matrix-Vector
Multiplication on GPUs Using the CSR Storage Format. In SC’14: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 769-780.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. Advances in Neural Information Processing Systems 30
(2017).

Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P
Sadayappan. 2019. Adaptive Sparse Tiling for Sparse Matrix Multiplication. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel Programming
(PPoPP 2019). 300-314

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. Advances in Neural Information Processing
Systems 33 (2020), 22118-22133.

Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. GE-SpMM:
General-Purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural
Networks. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. 1-12. https://doi.org/10.1109/SC41405.2020.
00076

Eun-Jin Im. 2000. Optimizing the Performance of Sparse Matrix-Vector Multiplica-
tion. University of California, Berkeley.

Eun-Jin Im and Katherine Yelick. 1998. Model-Based Memory Hierarchy Op-
timizations for Sparse Matrices. In Workshop on Profile and Feedback-Directed
Compilation, Vol. 139. Citeseer.

Intel. 2024. Intel oneAPI Math Kernel Library (oneMKL). https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onemkl.html. Accessed: August 29,
2024.

Peng Jiang, Changwan Hong, and Gagan Agrawal. 2020. A Novel Data Trans-
formation and Execution Strategy for Accelerating Sparse Matrix Multiplication
on GPUs. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). 376-388.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems (NeurIPS),
L. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/
paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa- Paper.pdf
David R. Kincaid, John R. Respess, David M. Young, and Rober R. Grimes. 1982.
Algorithm 586: ITPACK 2C: A FORTRAN Package for Solving Large Sparse Linear
Systems by Adaptive Accelerated Iterative Methods. ACM Trans. Math. Software
8,3 (sep 1982), 302-322. https://doi.org/10.1145/356004.356009

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Ama-
rasinghe. 2017. The Tensor Algebra Compiler. Proceedings of the ACM on Pro-
gramming Languages 1, OOPSLA (2017), 1-29.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436—444.

Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan Long. 2022. Automatic
Horizontal Fusion for GPU Kernels. In 2022 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). IEEE, 14-27.

Jiajia Li, Jimeng Sun, and Richard Vuduc. 2018. HiCOO: Hierarchical Storage of
Sparse Tensors. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 238-252.

Duane Merrill and Michael Garland. 2016. Merge-Based Sparse Matrix-Vector
Multiplication (SpMV) Using the CSR Storage Format. ACM Sigplan Notices 51, 8
(2016), 1-2.

Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. 2010. Auto-
matically Tuning Sparse Matrix-Vector Multiplication for GPU Architectures. In
High Performance Embedded Architectures and Compilers (HiPEAC 2010), Yale N.
Patt, Pierfrancesco Foglia, Evelyn Duesterwald, Paolo Faraboschi, and Xavier
Martorell (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 111-125.
Yuyao Niu, Zhengyang Lu, Meichen Dong, Zhou Jin, Weifeng Liu, and Guangming
Tan. 2021. TileSpMV: A Tiled Algorithm for Sparse Matrix-Vector Multiplication
on GPUs. In 2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 68-78.

[37

(38]

[39

[40

[42

[43

[44

S
)

[46

[47

[48

N
)

[50]

[51

o
&,

[53

(54]

[55

[56

o
=)

[58

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

NVIDIA. 2024. CUDA C++ Programming Guide, 7.14. Atomic Functions. https:
//docs.nvidia.com/cuda/cuda-c-programming- guide/index.html. Accessed: 2024-
05-22.

NVIDIA. 2024. cuSPARSE, The API Reference Guide For cuSPARSE, the CUDA
Sparse Matrix Library. https://docs.nvidia.com/cuda/cusparse/. Accessed: June
11, 2024.

NVIDIA. 2024. NSight Kernel Profiling GUide. https://docs.nvidia.com/nsight-
compute/ProfilingGuide/index html. Accessed: September 12, 2024.

Saher Odeh, Oded Green, Zahi Mwassi, Oz Shmueli, and Yitzhak Birk. 2012. Merge
Path-Parallel Merging Made Simple. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum. IEEE, 1611-1618.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Junyang Qian, Yosuke Tanigawa, Wenfei Du, Matthew Aguirre, Chris Chang,
Robert Tibshirani, Manuel A Rivas, and Trevor Hastie. 2020. A Fast and Scalable
Framework for Large-Scale and Ultrahigh-Dimensional Sparse Regression With
Application to the UK Biobank. PLoS Genetics 16, 10 (2020), e1009141.

Nobou Sato and WF Tinney. 1963. Techniques for Exploiting the Sparsity or the
Network Admittance Matrix. IEEE Transactions on Power Apparatus and Systems
82, 69 (1963), 944-950.

scikit learn. 2024. Classifier Comparison. https://scikit-learn.org/stable/auto_
examples/classification/plot_classifier_comparison.html. Accessed: June 11, 2024.
Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Magazine
29,3 (2008), 93-93.

Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP ’13) (Shenzhen,
China) (PPoPP ’13). Association for Computing Machinery, New York, NY, USA,
135-146. https://doi.org/10.1145/2442516.2442530

Shaden Smith and George Karypis. 2015. Tensor-Matrix Products With a Com-
pressed Sparse Tensor. In Proceedings of the 5th Workshop on Irregular Applications:
Architectures and Algorithms. 1-7.

C. Stylianou and M. Weiland. 2023. Optimizing Sparse Linear Algebra Through
Automatic Format Selection and Machine Learning. In 2023 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW). IEEE Computer
Society, Los Alamitos, CA, USA, 734-743. https://doi.org/10.1109/IPDPSW59300.
2023.00125

Qingxiao Sun, Yi Liu, Ming Dun, Hailong Yang, Zhongzhi Luan, Lin Gan,
Guangwen Yang, and Depei Qian. 2020. SpTFS: Sparse Tensor Format Se-
lection for MTTKRP via Deep Learning. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis. 1-14. https:
//doi.org/10.1109/SC41405.2020.00022

Ryan Swann, Muhammad Osama, Karthik Sangaiah, and Jalal Mahmud. 2024. Seer:
Predictive Runtime Kernel Selection for Irregular Problems. In 2024 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE
Computer Society, Los Alamitos, CA, USA, 133-142. https://doi.org/10.1109/
CGO57630.2024.10444812

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. 2019. Triton: An Inter-
mediate Language and Compiler for Tiled Neural Network Computations. In
Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages (MAPL 2019. 10-19.

William F Tinney and John W Walker. 1967. Direct Solutions of Sparse Network
Equations by Optimally Ordered Triangular Factorization. Proc. IEEE 55, 11 (1967),
1801-1809.

Qihan Wang, Zhen Peng, Bin Ren, Jie Chen, and Robert G Edwards. 2022. MemHC:
An Optimized GPU Memory Management Framework for Accelerating Many-
Body Correlation. ACM Transactions on Architecture and Code Optimization
(TACO) 19, 2 (2022), 1-26.

Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. GNNAdvisor: An Adaptive and Efficient Runtime System for
GNN Acceleration on GPUs. In 15th USENIX symposium on operating systems
design and implementation (OSDI 21). 515-531.

Ziheng Wang. 2020. Sparsert: Accelerating Unstructured Sparsity on Gpus for
Deep Learning Inference. In Proceedings of the ACM International Conference on
Parallel Architectures and Compilation Techniques (PACT). 31-42.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A Survey of
Transfer Learning. Journal of Big data 3 (2016), 1-40.

Anuradha Welivita, Indika Perera, Dulani Meedeniya, Anuradha Wickrama-
rachchi, and Vijini Mallawaarachchi. 2018. Managing Complex Workflows in
Bioinformatics: An Interactive Toolkit With Gpu Acceleration. IEEE Transactions
on NanoBioscience 17, 3 (2018), 199-208.

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65-76.

https://doi.org/10.1145/3639323
https://doi.org/10.1109/SC41405.2020.00076
https://doi.org/10.1109/SC41405.2020.00076
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1145/356004.356009
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cusparse/
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1109/IPDPSW59300.2023.00125
https://doi.org/10.1109/IPDPSW59300.2023.00125
https://doi.org/10.1109/SC41405.2020.00022
https://doi.org/10.1109/SC41405.2020.00022
https://doi.org/10.1109/CGO57630.2024.10444812
https://doi.org/10.1109/CGO57630.2024.10444812

HPDC ’25, July 20-23, 2025, Notre Dame, IN, USA

[59]

[60

[61

o
L)

[63]

Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel S
Emer. 2022. Sparseloop: An Analytical Approach to Sparse Tensor Accelerator
Modeling. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1377-1395.

Zhen Xie, Guangming Tan, Weifeng Liu, and Ninghui Sun. 2019. IA-SpGEMM:
an Input-Aware Auto-Tuning Framework for Parallel Sparse Matrix-Matrix Mul-
tiplication. In Proceedings of the ACM International Conference on Supercomputing
(Phoenix, Arizona) (ICS '19). Association for Computing Machinery, New York,
NY, USA, 94-105. https://doi.org/10.1145/3330345.3330354

Carl Yang, Aydin Bulug, and John D Owens. 2018. Design Principles for Sparse
Matrix Multiplication on the Gpu. In European Conference on Parallel Processing.
Springer, 672-687.

Xintian Yang, Srinivasan Parthasarathy, and Ponnuswamy Sadayappan. 2011.
Fast Sparse Matrix-Vector Multiplication on GPUs: Implications for Graph Mining.
Proceedings of the VLDB Endowment 4, 4 (2011).

Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2023. Sparse-
TIR: Composable Abstractions for Sparse Compilation in Deep Learning. In

[64

[65

Zhen Peng, Polykarpos Thomadakis, Jacques Pienaar, and Gokcen Kestor

Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (Vancouver, BC,
Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 660-678. https://doi.org/10.1145/3582016.3582047

Serif Yesil, Azin Heidarshenas, Adam Morrison, and Josep Torrellas. 2023. Wise:
Predicting the Performance of Sparse Matrix Vector Multiplication With Ma-
chine Learning. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming (PPoPP). 329-341.

Serif Yesil, José E Moreira, and Josep Torrellas. 2022. Dense Dynamic Blocks:
Optimizing SpMM for Processors With Vector and Matrix Units Using Machine
Learning Techniques. In Proceedings of the 36th ACM International Conference on
Supercomputing (ICS). 1-14.

Tuowen Zhao, Tharindu Rusira, Khalid Ahmad, and Mary Hall. 2016. A Novel
Variable-Blocking Representation for Efficient Sparse Matrix-Vector Multiply on
GPUs. In SC ’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis.

https://doi.org/10.1145/3330345.3330354
https://doi.org/10.1145/3582016.3582047

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Sparse Formats
	2.2 Prior Work on GPU Sparse Computation

	3 Overview of LiteForm
	4 Composable Ellpack (CELL) Format
	5 Automatic Format Composition
	5.1 Assessing the Performance Impact of CELL
	5.2 Optimizing Partitions in CELL Composition
	5.3 Optimizing Bucket Widths in CELL Composition

	6 Implementation
	7 Evaluation
	7.1 Performance Evaluation
	7.2 Format Construction Overhead
	7.3 Prediction Performance
	7.4 Cost Model Performance

	8 Limitations
	9 Related Works
	10 Conclusion
	Acknowledgments
	References

